Repository logo
  • English
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Research Outputs
  • Researchers
  • Disciplines
  • English
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Research Output
  3. Articles
  4. Intensive Review of Drones Detection and Tracking: Linear Kalman Filter Versus Nonlinear Regression, an Analysis Case
 
  • Details
Options

Intensive Review of Drones Detection and Tracking: Linear Kalman Filter Versus Nonlinear Regression, an Analysis Case

Journal
Archives of Computational Methods in Engineering
Date Issued
2023
Author(s)
Abu Zitar, Raed 
Physics, Mathematics, Computer science 
Mohsen, Amani
Seghrouchni, Amal ElFallah
Barbaresco, Frederic
Al-Dmour, Nidal A.
DOI
10.1007/s11831-023-09894-0
URI
https://depot.sorbonne.ae/handle/20.500.12458/1384
Abstract
In this paper, an extensive review for objects and drones (AUVs) detection and tracking is presented. The article presents state of the art methods used in detection and tracking of drones with adequate analysis and comparisons summarizing the findings of the most recent research material in that field. The most famous technique used in drones tracking is Kalman Filters (KFs) in its different forms. The paper presents analysis and comparisons for drones tracking based on Linear Kalman Filters (LKF) compared to tracking using Nonlinear Polynomial Regression (NPR) techniques. Interesting findings reflect the need for both methods at different circumstances depending on the noise conditions of the measurements. On the other hand, many new methods such as Artificial Intelligence (AI) based techniques are recently used in drones detection and recognition. Detection methods could come separate or combined with tracking techniques. The work presents broad and deep literature review with critical analysis of most famous methods used in drones detection and tracking.
Views
10
Last Month
3
Acquisition Date
Mar 31, 2023
View Details
google-scholar
Downloads
Explore by
  • Research Outputs
  • Researchers
  • Departments
Useful Links
  • Library
  • About us
  • Study
  • Careers
Contact

Email: library@sorbonne.ae

Phone: +971 (0) 2 656 9555/666

Website: https://www.sorbonne.ae/

Address: P.O. Box 38044, Abu Dhabi, U.A.E

Deposit your work

Email your work to: library@sorbonne.ae

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement