Now showing 1 - 10 of 41
  • Publication
    A hybrid Harris Hawks optimizer for economic load dispatch problems
    (2023) ;
    Al-Betar, Mohammed Azmi
    ;
    Awadallah, Mohammed A.
    ;
    Makhadmeh, Sharif Naser
    ;
    Abu Doush, Iyad
    ;
    Alshathri, Samah
    ;
    Abd Elaziz, Mohamed
    This paper proposes a hybridized version of the Harris Hawks Optimizer (HHO) with adaptive-hill-climbing optimizer to tackle economic load dispatch (ELD) problems. ELD is an important problem in power systems that is tackled by finding the optimal schedule of the generation units that minimize fuel conceptions under a set of constraints. Due to the complexity of ELD search space, as it is rigid and deep, the exploitation of HHO is improved by hybridizing it with a recent local search method called adaptive-hill climbing. The HHO can navigate several potential search space regions, while adaptive-hill climbing is used to deeply search for the local optimal solution in each potential region. To evaluate the proposed approach, six versions of ELD cases with various complexities and constraints have been used which are the 6 generation units with 1263 MW of load demand, 13 generation units with 1800 MW of load demand, 13 generation units with 2520 MW of load demand, 15 generation units with 2630 MW of load demand, 40 generation units with 10500 MW of load demand, and 140 generation units with 49342 MW of load demand. Furthermore, the proposed algorithm is evaluated on two ELD real-world cases which are 6 units-1263 MW and 15units-2630 MW. The results show that the proposed algorithm can achieve a significant performance for the majority of the experimented cases. It can achieve the best-reported solution for the ELD case with 15 generation units when compared to 15 well-established methods. Additionally, it obtains the second-best for the ELD case with 140 generation units when compared to 10 well-established methods. In conclusion, the proposed method can be an alternative to solve ELD problems which is efficient.
      23  1
  • Publication
    A modified coronavirus herd immunity optimizer for capacitated vehicle routing problem
    Capacitated Vehicle routing problem is NP-hard scheduling problem in which the main concern is to findthe best routes with minimum cost for a number of vehicles serving a number of scattered customersunder some vehicle capacity constraint. Due to the complex nature of the capacitated vehicle routingproblem, metaheuristic optimization algorithms are widely used for tackling this type of challenge.Coronavirus Herd Immunity Optimizer (CHIO) is a recent metaheuristic population-based algorithm thatmimics the COVID-19 herd immunity treatment strategy. In this paper, CHIO is modified for capacitatedvehicle routing problem. The modifications for CHIO are accomplished by modifying its operators to pre-serve the solution feasibility for this type of vehicle routing problems. To evaluate the modified CHIO, twosets of data sets are used: the first data set has ten Synthetic CVRP models while the second is an ABEFMPdata set which has 27 instances with different models. Moreover, the results achieved by modified CHIOare compared against the results of other 13 well-regarded algorithms. For the first data set, the modifiedCHIO is able to gain the same results as the other comparative methods in two out of ten instances andacceptable results in the rest. For the second and the more complicated data sets, the modified CHIO isable to achieve very competitive results and ranked the first for 8 instances out of 27. In a nutshell,the modified CHIO is able to efficiently solve the capacitated vehicle routing problem and can be utilizedfor other routing problems in the future such as multiple travelling salesman problem
    Scopus© Citations 4  126  52
  • Publication
    A non-convex economic load dispatch problem using chameleon swarm algorithm with roulette wheel and Levy flight methods
    (2023) ;
    Braik, Malik Sh.
    ;
    Awadallah, Mohammed A.
    ;
    Al-Betar, Mohammed Azmi
    ;
    Hammouri, Abdelaziz I.
    An Enhanced Chameleon Swarm Algorithm (ECSA) by integrating roulette wheel selection and Lévy flight methods is presented to solve non-convex Economic Load Dispatch (ELD) problems. CSA has diverse strategies to move towards the optimal solution. Even so, this algorithm’s performance faces some hurdles, such as early convergence and slumping into local optimum. In this paper, several enhancements were made to this algorithm. First, it’s position updating process was slightly tweaked and took advantage of the chameleons’ randomization as well as adopting several time-varying functions. Second, the Lévy flight operator is integrated with roulette wheel selection method and both are combined with ECSA to augment the exploration behavior and lessen its bias towards exploitation. Finally, an add-on position updating strategy is proposed to develop a further balance between exploration and exploitation conducts. The optimization performance of ECSA is shown by testing it on five various real ELD cases with a generator having 3, 13, 40, 80 and 140 units, each with different constraints. The results of the ELD systems’ analysis depict that ECSA is better than the parent CSA and other state-of-the art methods. Further, the efficacy of ECSA was experimented on several benchmark test functions, and its performance was compared to other well-known optimization methods. Experimental results show that ECSA surpasses other methods on complex benchmark functions with modest computational burdens. The superiority and practicality of ECSA is demonstrated by getting new best solutions for large-scale ELD cases such as 40-unit and 140-unit test systems.
      14
  • Publication
    A Non-convex Economic Load Dispatch Using Hybrid Salp Swarm Algorithm
    In this paper, the economic load dispatch (ELD) problem with valve point effect is tackled using a hybridization between salp swarm algorithm (SSA) as a population-based algorithm and β-hill climbing optimizer as a single point-based algorithm. The proposed hybrid SSA is abbreviated as HSSA. This is to achieve the right balance between the intensification and diversification of the ELD search space. ELD is an important problem in the power systems which is concerned with scheduling the generation units in active generators in optimal way to minimize the fuel cost in accordance with equality and inequality constraints. The proposed HSSA is evaluated using six real-world ELD systems: 3-unit generator, two cases of 13-unit generator, 40-unit generator, 80-unit generator, and 140-unit generator system. These ELD systems are well circulated in the previous literature. The comparative results against 66 well-regarded algorithms are conducted. The results show that the proposed HSSA is able to produce viable and competitive solutions for ELD problems.
    Scopus© Citations 9  80  24
  • Publication
    A Novel Big Data Classification Technique for Healthcare Application Using Support Vector Machine, Random Forest and J48
    (2023) ;
    Al-Manaseer, Hitham
    ;
    Abualigah, Laith
    ;
    Alsoud, Anas Ratib
    ;
    Ezugwu, Absalom E.
    ;
    Jia, Heming
    In this study, the possibility of using and applying the capabilities of artificial intelligence (AI) and machine learning (ML) to increase the effectiveness of Internet of Things (IoT) and big data in developing a system that supports decision makers in the medical fields was studied. This was done by studying the performance of three well-known classification algorithms Random Forest Classifier (RFC), Support Vector Machine (SVM), and Decision Tree-J48 (J48), to predict the probability of heart attack. The performance of the algorithms for accuracy was evaluated using the Healthcare (heart attack possibility) dataset, freely available on kagle. The data was divided into three categories consisting of (303, 909, 1808) instances which were analyzed on the WEKA platform. The results showed that the RFC was the best performer.
      21
  • Publication
    A Novel Deep Learning Technique for Detecting Emotional Impact in Online Education
    (2022) ;
    AlZu’bi, Shadi
    ;
    Hawashin, Bilal
    ;
    Abu Shanab, Samia
    ;
    Zraiqat, Amjed
    ;
    Mughaid, Ala
    ;
    Almotairi, Khaled H.
    ;
    Abualigah, Laith
    Emotional intelligence is the automatic detection of human emotions using various intelligent methods. Several studies have been conducted on emotional intelligence, and only a few have been adopted in education. Detecting student emotions can significantly increase productivity and improve the education process. This paper proposes a new deep learning method to detect student emotions. The main aim of this paper is to map the relationship between teaching practices and student learning based on emotional impact. Facial recognition algorithms extract helpful information from online platforms as image classification techniques are applied to detect the emotions of student and/or teacher faces. As part of this work, two deep learning models are compared according to their performance. Promising results are achieved using both techniques, as presented in the Experimental Results Section. For validation of the proposed system, an online course with students is used; the findings suggest that this technique operates well. Based on emotional analysis, several deep learning techniques are applied to train and test the emotion classification process. Transfer learning for a pre-trained deep neural network is used as well to increase the accuracy of the emotion classification stage. The obtained results show that the performance of the proposed method is promising using both techniques, as presented in the Experimental Results Section.
      44  6
  • Publication
    A Review for the Genetic Algorithm and the Red Deer Algorithm Applications
    The Red Deer algorithm (RD), a contemporary population-based meta heuristic algorithm, applications are thoroughly examined in this paper. The RD algorithm blends evolutionary algorithms' survival of the fittest premise with the productivity and richness of heuristic search approaches. On the other a well-known and relatively older evolutionary based algorithm called the Genetic Algorithm applications are also shown. The contemporary algorithm; the RDA, and the older algorithm; the GA have wide applications in computer science and engineering. This paper sheds the light on all those applications and enable researchers to exploit the possibilities of adapting them in any applications they may have either in engineering, computer science, or business.
      28
  • Publication
    A Review of the Genetic Algorithm and JAYA Algorithm Applications
    This study throws the light on two metaheuristic algorithms and enable researchers to leverage the potential of adapting them in whatever applications they may have either in engineering, computer science, or business. The two algorithms are the GA and the JAYA. The JAYA algorithm is a modern population-based meta heuristic algorithm, its applications are presented in this work. The JA Y A algorithm integrates evolutionary algorithms' survival of the fittest concept with the productivity and richness of heuristic search methodologies. On the other a well-known and somewhat older evolutionary based method called the Genetic Algorithm with applications is also presented here. The recent two algorithms; the JA Y A and the GA have broad comparable applications in computer science and engineering applications.
      7
  • Publication
    An enhanced binary Rat Swarm Optimizer based on local-best concepts of PSO and collaborative crossover operators for feature selection
    (2022) ;
    Awadallah, Mohammed A.
    ;
    Al-Betar, Mohammed Azmi
    ;
    Braik, Malik Shehadeh
    ;
    Hammouri, Abdelaziz I.
    ;
    Abu Doush, Iyad
    In this paper, an enhanced binary version of the Rat Swarm Optimizer (RSO) is proposed to deal with Feature Selection (FS) problems. FS is an important data reduction step in data mining which finds the most representative features from the entire data. Many FS-based swarm intelligence algorithms have been used to tackle FS. However, the door is still open for further investigations since no FS method gives cutting-edge results for all cases. In this paper, a recent swarm intelligence metaheuristic method called RSO which is inspired by the social and hunting behavior of a group of rats is enhanced and explored for FS problems. The binary enhanced RSO is built based on three successive modifications: i) an S-shape transfer function is used to develop binary RSO algorithms; ii) the local search paradigm of particle swarm optimization is used with the iterative loop of RSO to boost its local exploitation; iii) three crossover mechanisms are used and controlled by a switch probability to improve the diversity. Based on these enhancements, three versions of RSO are produced, referred to as Binary RSO (BRSO), Binary Enhanced RSO (BERSO), and Binary Enhanced RSO with Crossover operators (BERSOC). To assess the performance of these versions, a benchmark of 24 datasets from various domains is used. The proposed methods are assessed concerning the fitness value, number of selected features, classification accuracy, specificity, sensitivity, and computational time. The best performance is achieved by BERSOC followed by BERSO and then BRSO. These proposed versions are comparatively assessed against 25 well-regarded metaheuristic methods and five filter-based approaches. The obtained results underline their superiority by producing new best results for some datasets.
      79  1
  • Publication
    An intelligent cybersecurity system for detecting fake news in social media websites
    (2022) ;
    Mughaid, Ala
    ;
    Al-Zu'bi, Shadi
    ;
    Arjan, A
    ;
    Al-Amrat, Rula
    ;
    Alajmi, Rathaa
    ;
    Abualigah, Laith
    ;
    Maalej, Ahmed
    People worldwide suffer from fake news in many life aspects, healthcare, transportation, education, economics, and many others. Therefore, many researchers have considered seeking techniques for automatically detecting fake news in the last decade. The most popular news agencies use e-publishing on their websites; even websites can publish any news they want. However, thus before quotation any news from a website, there should be a close look at news resource ranking by using a trusted websites classifier, such as the website world rank, which reflects the repute of these websites. This paper uses the world rank of news websites as the main factor of news accuracy by using two widespread and trusted websites ranking. Moreover, a secondary factor is proposed to compute the news accuracy similarity by comparing the current news with fakes news and getting the possible news accuracy. Experiments results are conducted on several benchmark datasets. The results showed that the proposed method got promising results compared to other comparative methods in defining the news accuracy.
    Scopus© Citations 3  36  35