Repository logo
  • English
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Research Outputs
  • Researchers
  • Disciplines
  • English
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Research Output
  3. Articles
  4. Combinatorial method for bandwidth selection in wind speed kernel density estimation
 
  • Details
Options

Combinatorial method for bandwidth selection in wind speed kernel density estimation

Date Issued
2019
Author(s)
El Dakkak, Omar 
Physics, Mathematics, Computer science 
DOI
10.1049/iet-rpg.2018.5643
URI
http://hdl.handle.net/20.500.12458/365
Abstract
Accurate estimation of wind speed probability density at a given site is crucial in maximising the yield of a wind farm. This goal calls for devising probabilistic models with adaptive algorithms that accurately fit wind speed distributions. In this study, a non-parametric combinatorial method is implemented for obtaining an accurate non-parametric kernel density estimation (KDE)-based statistical model of wind speed, in which the selection of the bandwidth parameter is optimised concerning mean integrated absolute error (L 1 error ) between the true and hypothesised densities. The proposed model is compared with three popular parametric models and Rule of Thumb-based KDE model using standard goodness-of-fit and statistical tests. Results confirm the suitability of KDE methods for wind speed modelling and the accuracy of the proposed implemented combinatorial method. It is worthwhile mentioning that the implemented procedure is adaptive (i.e. data driven) and robust.
Scopus© citations
4
Acquisition Date
Oct 25, 2022
View Details
Views
69
Acquisition Date
Mar 24, 2023
View Details
google-scholar
Downloads
Explore by
  • Research Outputs
  • Researchers
  • Departments
Useful Links
  • Library
  • About us
  • Study
  • Careers
Contact

Email: library@sorbonne.ae

Phone: +971 (0) 2 656 9555/666

Website: https://www.sorbonne.ae/

Address: P.O. Box 38044, Abu Dhabi, U.A.E

Deposit your work

Email your work to: library@sorbonne.ae

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement