Repository logo
  • English
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Research Outputs
  • Researchers
  • Disciplines
  • English
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Research Output
  3. Articles
  4. Knowledge-based Deep Learning for Modeling Chaotic Systems
 
  • Details
Options

Knowledge-based Deep Learning for Modeling Chaotic Systems

Date Issued
2022
Author(s)
Elabid, Zakaria
Physics, Mathematics, Computer science 
Chakraborty, Tanujit 
Physics, Mathematics, Computer science 
Hadid, Abdenour 
Physics, Mathematics, Computer science 
DOI
10.48550/arXiv.2209.04259
URI
https://depot.sorbonne.ae/handle/20.500.12458/1318
Abstract
Deep Learning has received increased attention due to its unbeatable success in many fields, such as computer vision, natural language processing, recommendation systems, and most recently in simulating multiphysics problems and predicting nonlinear dynamical systems. However, modeling and forecasting the dynamics of chaotic systems remains an open research problem since training deep learning models requires big data, which is not always available in many cases. Such deep learners can be trained from additional information obtained from simulated results and by enforcing the physical laws of the chaotic systems. This paper considers extreme events and their dynamics and proposes elegant models based on deep neural networks, called knowledge-based deep learning (KDL). Our proposed KDL can learn the complex patterns governing chaotic systems by jointly training on real and simulated data directly from the dynamics and their differential equations. This knowledge is transferred to model and forecast real-world chaotic events exhibiting extreme behavior. We validate the efficiency of our model by assessing it on three real-world benchmark datasets: El Niño sea surface temperature, San Juan Dengue viral infection, and Bjørnøya daily precipitation, all governed by extreme events' dynamics. Using prior knowledge of extreme events and physics-based loss functions to lead the neural network learning, we ensure physically consistent, generalizable, and accurate forecasting, even in a small data regime. Index Terms-Chaotic systems, long short-term memory, deep learning, extreme event modeling.
Funding(s)
TotalEnergies
Subjects
  • Chaotic systems

  • long short-term memor...

  • deep learning

  • extreme event modelin...

Views
22
Acquisition Date
Mar 31, 2023
View Details
Downloads
2
Acquisition Date
Mar 31, 2023
View Details
google-scholar
Explore by
  • Research Outputs
  • Researchers
  • Departments
Useful Links
  • Library
  • About us
  • Study
  • Careers
Contact

Email: library@sorbonne.ae

Phone: +971 (0) 2 656 9555/666

Website: https://www.sorbonne.ae/

Address: P.O. Box 38044, Abu Dhabi, U.A.E

Deposit your work

Email your work to: library@sorbonne.ae

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement