Repository logo
  • English
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Research Outputs
  • Researchers
  • Disciplines
  • English
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Research Output
  3. Articles
  4. Enhancement of dielectric, piezoelectric, ferroelectric, and electrocaloric properties in slightly doped (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramic by samarium
 
  • Details
Options

Enhancement of dielectric, piezoelectric, ferroelectric, and electrocaloric properties in slightly doped (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramic by samarium

Journal
Journal of Applied Physics
Date Issued
2019
Author(s)
Seveyrat, Laurence
Slimani, Ahmed 
Physics, Mathematics, Computer science 
Khemakhem, Hamadi
Turki, Olfa
Sassi, Zina
Lebrun, Laurent
DOI
10.1063/1.5083670
URI
http://hdl.handle.net/20.500.12458/359
Abstract
We investigated the structural, dielectric, piezoelectric, ferroelectric, and electrocaloric properties of the samarium doped (Na0.5Bi0.5)0.94Ba0.06TiO3 (NBT-6BT) ceramic. X-ray diffraction and Raman spectra confirm the coexistence of the rhombohedral and tetragonal structures for a low amount of Sm (≤8 mol. %), while the compositions with a higher amount of Sm2O3 (11 mol. %) have a pseudocubic structure. The thermal dependency of the dielectric permittivity revealed two phase transitions from ferroelectric to antiferroelectric at low temperatures, then to paraelectric phase at higher temperatures. The substitution of NBT-6BT with 2 mol. % of Sm2O3 remarkably enhances the ferroelectric and the piezoelectric properties of the (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramic. Furthermore, a large electrocaloric effect (ΔT=1.4K) (ΔT=1.4K) was directly measured on the ceramic doped with 2 mol. % of Sm2O3 under an applied electric field of 50 kV/cm.
File(s)
 paper2019.pdf (4 MB)
Scopus© citations
13
Acquisition Date
Oct 25, 2022
View Details
Views
242
Last Month
4
Acquisition Date
Mar 19, 2023
View Details
Downloads
90
Last Month
2
Acquisition Date
Mar 19, 2023
View Details
google-scholar
Explore by
  • Research Outputs
  • Researchers
  • Departments
Useful Links
  • Library
  • About us
  • Study
  • Careers
Contact

Email: library@sorbonne.ae

Phone: +971 (0) 2 656 9555/666

Website: https://www.sorbonne.ae/

Address: P.O. Box 38044, Abu Dhabi, U.A.E

Deposit your work

Email your work to: library@sorbonne.ae

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement