Repository logo
  • English
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Research Outputs
  • Researchers
  • Disciplines
  • English
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Research Output
  3. Articles
  4. Optical and radiative properties of aerosols over Abu Dhabi in the United Arab Emirates
 
  • Details
Options

Optical and radiative properties of aerosols over Abu Dhabi in the United Arab Emirates

Journal
Journal of Earth System Science
ISSN
0253-4126
Date Issued
2016
Author(s)
Ben Romdhane, Haifa 
Geography 
Beegum, S Naseema
Ali, Mohammed Tauha
Armstrong, Peter
Ghedira, Hosni
DOI
10.1007/s12040-016-0759-x
URI
https://depot.sorbonne.ae/handle/20.500.12458/1280
Abstract
The present study is on the aerosol optical and radiative properties in the short-wave radiation and its climate implications at the arid city of Abu Dhabi (24.42 ∘N, 54.61 ∘E, 4.5 m MSL), in the United Arab Emirates. The direct aerosol radiative forcings (ARF) in the short-wave region at the top (TOA) and bottom of the atmosphere (BOA) are estimated using a hybrid approach, making use of discrete ordinate radiative transfer method in conjunction with the short-wave flux and spectral aerosol optical depth (AOD) measurements, over a period of 3 years (June 2012–July 2015), at Abu Dhabi located at the south-west coast of the Arabian Gulf. The inferred microphysical properties of aerosols at the measurement site indicate strong seasonal variations from the dominance of coarse mode mineral dust aerosols during spring (March–May) and summer (June–September), to the abundance of fine/accumulation mode aerosols mainly from combustion of fossil-fuel and bio-fuel during autumn (October–November) and winter (December–February) seasons. The monthly mean diurnally averaged ARF at the BOA (TOA) varies from −13.2 Wm−2 (∼−0.96 Wm−2) in November to −39.4 Wm−2 (−11.4 Wm−2) in August with higher magnitudes of the forcing values during spring/summer seasons and lower values during autumn/winter seasons. The atmospheric aerosol forcing varies from + 12.2 Wm−2 (November) to 28.2 Wm−2 (June) with higher values throughout the spring and summer seasons, suggesting the importance of mineral dust aerosols towards the solar dimming. Seasonally, highest values of the forcing efficiency at the surface are observed in spring (−85.0 ± 4.1 W m−2 τ −1) followed closely by winter (−79.2 ± 7.1 W m−2 τ −1) and the lowest values during autumn season (−54 ± 4.3 W m−2 τ −1). The study concludes with the variations of the atmospheric heating rates induced by the forcing. Highest heating rate is observed in June (0.39 K day −1) and the lowest in November (0.17 K day −1) and the temporal variability of this parameter is linearly associated with the aerosol absorption index.
Subjects
  • Aerosol optical depth...

  • AERONET

  • short-wave global irr...

  • aerosol radiative for...

  • heating rate

  • aerosol absorption in...

Scopus© citations
2
Acquisition Date
Oct 25, 2022
View Details
Views
13
Acquisition Date
Mar 31, 2023
View Details
google-scholar
Downloads
Explore by
  • Research Outputs
  • Researchers
  • Departments
Useful Links
  • Library
  • About us
  • Study
  • Careers
Contact

Email: library@sorbonne.ae

Phone: +971 (0) 2 656 9555/666

Website: https://www.sorbonne.ae/

Address: P.O. Box 38044, Abu Dhabi, U.A.E

Deposit your work

Email your work to: library@sorbonne.ae

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement