Options
Probabilistic AutoRegressive Neural Networks for Accurate Long-Range Forecasting
Journal
Communications in Computer and Information Science
Neural Information Processing
Date Issued
2023
Author(s)
Abstract
Forecasting time series data is a critical area of research with applications spanning from stock prices to early epidemic prediction. While numerous statistical and machine learning methods have been proposed, real-life prediction problems often require hybrid solutions that bridge classical forecasting approaches and modern neural network models. In this study, we introduce a Probabilistic AutoRegressive Neural Network (PARNN), capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns. PARNN is constructed by improving autoregressive neural networks (ARNN) using autoregressive integrated moving average (ARIMA) feedback error. Notably, the PARNN model provides uncertainty quantification through prediction intervals and conformal predictions setting it apart from advanced deep learning tools. Through comprehensive computational experiments, we evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models. Diverse real-world datasets from macroeconomics, tourism, epidemiology, and other domains are employed for short-term, medium-term, and long-term forecasting evaluations. Our results demonstrate the superiority of PARNN across various forecast horizons, surpassing the state-of-the-art forecasters. The proposed PARNN model offers a valuable hybrid solution for accurate long-range forecasting. The ability to quantify uncertainty through prediction intervals further enhances the model’s usefulness in various decision-making processes.
Scopus© citations
0
Acquisition Date
Nov 24, 2024
Nov 24, 2024
Views
20
Last Week
4
4
Last Month
5
5
Acquisition Date
Nov 10, 2024
Nov 10, 2024