Repository logo
  • English
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Research Outputs
  • Researchers
  • Disciplines
  • English
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Research Output
  3. Articles
  4. Organic Crystalline Optical Waveguides That Remain Elastic from -196 to ≈ 200°C
 
  • Details
Options

Organic Crystalline Optical Waveguides That Remain Elastic from -196 to ≈ 200°C

Journal
Advanced Optical Materials
ISSN
2195-1071
Date Issued
2022
Author(s)
Li, Liang 
Physics, Mathematics, Computer science 
Tang, Shiyue
Ye, Kaiqi
Commins, Patrick
Naumov, Panče
Zhang, Hongyu
DOI
10.1002/adom.202200627
URI
https://depot.sorbonne.ae/handle/20.500.12458/1286
Abstract
Organic crystals that are capable to deform (reversibly or irreversibly) similar to polymer materials have been widely reported over the past ten years. However, most of the reported organic crystals can only be elastically bent within a narrow temperature range, and reports on their thermal behavior that would encourage applications of these energy-transducing elements in extreme conditions are not readily available. This work designs a linear and flat π-conjugated molecule with double intramolecular hydrogen bonds that prevent thermally induced conformational distortions. The molecule assembles as a rigid building block into centimeter-sized wide organic crystals that can be elastically bent over a temperature range spanning close to 400 °C, from −196 to ≈200 °C. The emission wavelength of the crystals is also temperature dependent, and can be continually tuned from 547 to 577 nm upon heating from 20 to ≈200 °C. This inspires the design of a lightweight, organic, elastic optical waveguide where the output energy is controlled by the operating temperature. The wide range of crystal flexibility expands the range of conditions for application of organic crystals as optical waveguides.
Scopus© citations
0
Acquisition Date
Oct 25, 2022
View Details
Views
15
Acquisition Date
Jun 8, 2023
View Details
google-scholar
Downloads
Explore by
  • Research Outputs
  • Researchers
  • Departments
Useful Links
  • Library
  • About us
  • Study
  • Careers
Contact

Email: library@sorbonne.ae

Phone: +971 (0) 2 656 9555/666

Website: https://www.sorbonne.ae/

Address: P.O. Box 38044, Abu Dhabi, U.A.E

Deposit your work

Email your work to: library@sorbonne.ae

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement