Repository logo
  • English
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Research Outputs
  • Researchers
  • Disciplines
  • English
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Research Output
  3. Articles
  4. PARNN: A Probabilistic Autoregressive Neural Network Framework for Accurate Forecasting
 
  • Details
Options

PARNN: A Probabilistic Autoregressive Neural Network Framework for Accurate Forecasting

Journal
IEEE Transactions on Knowledge and Data Engineeing
Date Issued
2022
Author(s)
Hadid, Abdenour 
Physics, Mathematics, Computer science 
Chakraborty, Tanujit 
Physics, Mathematics, Computer science 
Panja, Madhurima
Kumar, Uttam
DOI
10.48550/arXiv.2204.09640
URI
https://depot.sorbonne.ae/handle/20.500.12458/1322
Abstract
Forecasting time series data represents an emerging field of research in data science and knowledge discovery with vast applications ranging from stock price and energy demand prediction to the early prediction of epidemics. Numerous statistical and machine learning methods have been proposed in the last five decades with the demand for high-quality and reliable forecasts. However, in real-life prediction problems, situations exist in which a model based on one of the above paradigms is preferable. Therefore, hybrid solutions are needed to bridge the gap between classical forecasting methods and modern neural network models. In this context, we introduce a Probabilistic AutoRegressive Neural Network (PARNN) model that can handle a wide variety of complex time series data (e.g., nonlinearity, non-seasonal, long-range dependence, and non-stationarity). The proposed PARNN model is built by creating a fusion of an integrated moving average and autoregressive neural network to preserve the explainability, scalability, and "white-boxlike" prediction behavior of the individuals. Sufficient conditions for asymptotic stationarity and geometric ergodicity are obtained by considering the asymptotic behavior of the associated Markov chain. Unlike advanced deep learning tools, the uncertainty quantification of the PARNN model based on prediction intervals is obtained. During computational experiments, PARNN outperforms standard statistical, machine learning, and deep learning models (e.g., Transformers, NBeats, DeepAR, etc.) on a diverse collection of real-world datasets from macroeconomics, tourism, energy, epidemiology, and others for short-term, medium-term, and long-term forecasting. Multiple comparisons with the best method are carried out to showcase the superiority of the proposal in comparison with the state-ofthe-art forecasters over different forecast horizons.
Subjects
  • Forecasting

  • Autoregressive neural...

  • Hybrid model

  • Ergodicity

  • Asymptotic stationari...

Views
55
Last Week
2
Last Month
8
Acquisition Date
Mar 31, 2023
View Details
Downloads
2
Acquisition Date
Mar 31, 2023
View Details
google-scholar
Explore by
  • Research Outputs
  • Researchers
  • Departments
Useful Links
  • Library
  • About us
  • Study
  • Careers
Contact

Email: library@sorbonne.ae

Phone: +971 (0) 2 656 9555/666

Website: https://www.sorbonne.ae/

Address: P.O. Box 38044, Abu Dhabi, U.A.E

Deposit your work

Email your work to: library@sorbonne.ae

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement