Now showing 1 - 10 of 11
  • Publication
    Ionic Liquid Engineering in Perovskite Photovoltaics
    ( 2022) ;
    Wang, Fei
    ;
    Duan, Dawei
    ;
    Singh, Mriganka
    ;
    Sutter‐Fella, Carolin M
    ;
    Lin, Haoran
    ;
    Naumov, Panče
    ;
    Hu, Hanlin
    Over the past decade, perovskite photovoltaics have approached other currently available technologies and proven to be the most prospective type of solar cells. Although the many-sided research in this very active field has generated consistent results with regards to their undisputed consistently increasing power conversion efficiency, it also produced several rather contradictory opinions. Among other important details, debate surrounding their proneness to surface degradation and poor mechanical robustness, as well as the environmental footprint of this materials class remains a moot point. The application of ionic liquids appears as one of the potential remedies to some of these challenges due to their high conductivity, the opportunities for chemical ‘tuning’ of the structure, and relatively lower environmental footprint. This article provides an overview, classification, and applications of ionic liquids in perovskite solar cells. We summarize the use and role of ionic liquids as versatile additives, solvents, and modifiers in perovskite precursor solution, charge transport layer, as well as for interfacial and stability engineering. Finally, challenges and the future prospects for the design and/or selection of ionic liquids with a specific profile that meets the requirements for next generation highly efficient and stable perovskite solar cells are proposed.
      64Scopus© Citations 1
  • Publication
    Organic Single‐Crystal Actuators and Waveguides that Operate at Low Temperatures
    ( 2022) ;
    Linfeng Lan
    ;
    Qi Di
    ;
    Xuesong Yang
    ;
    Xiaokong Liu
    ;
    Panče Naumov
    ;
    Hongyu Zhang
    Applications in extreme conditions, such as those encountered in space exploration, require lightweight materials that can retain their elasticity in extremely cold environments. However, cryogenic treatment of most soft polymeric and elastomeric materials results in complete loss of their ability for elastic flow, whereby such materials that are normally ductile become stiff, brittle, and prone to cracking. Here, a facile method for preparation of hybrid organic crystalline materials that are not only cryogenically robust but are also capable of large, recoverable, and reversible deformation at low temperatures is reported. To that end, flexible organic crystals are first mechanically reinforced by a polymer coating and combined with a thermally responsive polymer. The resulting hybrid materials respond linearly and reversibly to temperatures from −15 to −120 °C without fatigue in air as well as in cold vacuum. The approach proposed here not only circumvents one of the main drawbacks that are inherent to the amorphous nature and has thus far limited the applications of polymeric materials at low temperatures, but it also provides a cost-effective access to a myriad of lightweight sensing, electronic, optical or actuating devices that can operate in low-temperature environmental settings.
      21  1
  • Publication
    Recent Progress in Ionic Liquids for Stability Engineering of Perovskite Solar Cells
    ( 2022) ;
    Wang, Fei
    ;
    Ge, Chuang-ye
    ;
    Duan, Dawei
    ;
    Lin, Haoran
    ;
    Naumov, Panče
    ;
    Hu, Hanlin
    Perovskite solar cells attract widespread attention due to their impressive power conversion efficiencies, high absorption coefficients, tunable bandgap, and straightforward manufacturing protocols. However, in the process of further development and optimization toward mass production, the long-term stability stands as one of the most urgent challenges that need to be overcome. Given the excellent thermal stability and high structural designability, ionic liquids (ILs) are relatively green room-temperature molten salts that have been widely applied to perovskite photovoltaic devices with promising results in view of improved stability and enhanced device performance. In this review, the reasons and mechanisms of instability of such devices under external and internal factors are analyzed. The current strategies of ILs engineering for improved stability of the devices are classified and summarized, including the IL-assisted perovskite film evolution and IL-modified photophysical properties of the perovskite photoactive layer and the related stability and photovoltaic performance of the devices. The challenges that stand as obstacles toward further development of perovskite solar cells based on IL engineering and their prospects are also discussed.
      8
  • Publication
    Hybrid Elastic Organic Crystals that Respond to Aerial Humidity
    ( 2022) ;
    Xu Yu
    ;
    Linfeng Lan
    ;
    Xuesong Yang
    ;
    Baolei Tang
    ;
    Xiaokong Liu
    ;
    Panče Naumov
    ;
    Hongyu Zhang
    Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a commonplace, however mechanical response of organic crystals to changes in humidity has not been accomplished yet. Here, we report a universal approach to instigating a humidity response into elastically bendable organic crystals that elicits controllable deformation with linear response to aerial humidity while retaining their physical integrity entirely intact. Hygroresponsive bilayer elements are designed by mechanically coupling a humidity-responsive polymer with elastic molecular crystals that have been mechanically reinforced by a polymer coating. As an illustration of the application of these cladded crystalline actuators, they are tested as active optical transducers of visible light where the position of light output can be precisely controlled by variations in aerial humidity. Within a broader context, the approach described here provides access to a vast range of mechanically robust, lightweight hybrid hygroresponsive crystalline materials.
      30  1Scopus© Citations 4
  • Publication
    Variation in sooting characteristics and cetane number of diesel with the addition of a monoterpene biofuel, α-pinene
    ( 2022) ;
    Alanood Al Zaabi
    ;
    Abhijeet Raj
    ;
    Mirella Elkadi
    ;
    Dalaver Anjum
    ;
    Azhagapillai Prabhu
    ;
    Gerardo D.J. Pena
    ;
    Abraham George
    ;
    Mariam Nasser Al Shebli
    Diesel fuel combustion generates soot particles, which are harmful for human health and the environment. To reduce soot emission, various solutions are proposed in the literature such as the use of metal-additives in fuels, fuel blending with biofuels, and the use of diesel particulate filters. This study analyses the effect of the addition of a bicyclic monoterpene hydrocarbon biofuel, α-pinene to diesel in different proportions on the fuel cetane number, sooting propensity, and the physicochemical properties of soot nanoparticles. The addition of 10% α-pinene to diesel exhibited a synergistic effect on sooting tendency and reduced the threshold sooting index of diesel by 21%, even though α-pinene is an unsaturated hydrocarbon, and had a minimal impact on cetane number, which reduced from 63.5 for diesel to 61.5 for the blended fuel. The influence of α-pinene addition to diesel on soot nanostructural characteristics and reactivity is determined through different characterization approaches including HRTEM, TGA, XRD, SEM-EDX, and EELS. The results indicate that α-pinene addition to diesel imposes curvatures in soot nanostructure, creates relatively smaller fringes (PAHs) in soot, and reduces soot aromatic content to improve soot oxidation rate.
      32  1Scopus© Citations 2
  • Publication
    Shrinkage, hydration, and strength development of limestone calcined clay cement (LC3) with different sulfation levels
    ( 2022) ;
    Rotana Hay
    ;
    Kemal Celik
    This study investigated autogenous shrinkage of limestone calcined clay cement (LC3)-based mixes with various sulfation levels of hemihydrate. Physicochemical evolution and strength development were also monitored. Superior mechanical performance of the mixes was achieved at an optimal sulfation level, although the shrinkage was reduced with the sulfate content. Calorimetry data showed the hemihydrate delayed and broadened the second aluminate peak. Both gypsum and ettringite formed early during hydration, and carboaluminates were observed after 3 days of curing. Ettringite in the LC3 mixes was of smaller sizes in comparison to that in the ordinary Portland cement (OPC) mixes, attributable to the pore refinement in the LC3 matrices. The content of portlandite (Ca(OH)2) was reduced with the curing time due to pozzolanic reactions. The findings demonstrated a coupling effect of both the chemical and microstructural change on the observed autogenous shrinkage and the consequent performance of LC3-based concrete composites.
      39  4Scopus© Citations 5
  • Publication
    Packing-Dependent Mechanical Properties of Schiff Base Crystals
    ( 2022) ;
    Lan, Linfeng
    ;
    Di, Qi
    ;
    Liu, Bin
    ;
    Xu, Yu-xin
    ;
    Naumov, Panče
    ;
    Zhang, Hongyu
    Flexible luminescent crystals endowed with mechanical compliance are emerging as materials that could be the foundation of future lightweight single-crystal flexible optoelectronics. Multiple mechanical responses (for example, elastic and plastic deformation) are rarely observed with the same material among the reported examples of such materials. Here, we report a Schiff base, (Z)-3-(4-ethoxyphenyl)-2-(4-(((E)-2-hydroxy-5-methoxybenzylidene)amino)phenyl)acrylonitrile, which crystallizes as two polymorphs and one tetrahydrofuran solvate. All three forms are emissive, but they have different mechanical properties. Specifically, two of the forms that are unsolvated polymorphs (denoted A and B) were found to be brittle and plastic, respectively, while the third form, which is a solvate (denoted C), showed excellent elasticity. Notably, form C becomes plastic after the crystal is desolvated. Single-crystal X-ray diffraction (SCXRD) and mechanical testing were performed to obtain better insight into the root-cause for the observed difference in mechanical properties. Since crystals of forms B and C are mechanically compliant as well as optically transparent, they were tested as flexible single-crystal optical waveguides.
      6
  • Publication
    Comparative Study of Polyethylene Films Embedded with Oxide Nanoparticles of Granulated and Free-Standing Nature
    ( 2022) ; ; ;
    Le Guyon, Valerie
    ;
    ;
    El-Rifai, Joumana
    ;
    Angastiniotis, Nicos
    ;
    Koutsokeras, Loukas
    ;
    Duponchel, Benoît
    Nanocomposite polymer films are a very diverse research field due to their many applications. The search for low-cost, versatile methods, producing regulated properties of the final products, has thus become extremely relevant. We have previously reported a bulk-scale process, dispersing granulated metal oxide nanoparticles, of both unary and multi-component nature, in a low-density polyethylene (LDPE) polymer matrix, establishing a reference in the produced films’ optical properties, due to the high degree of homogeneity and preservation of the primary particle size allowed by this method. In this work, unmodified, free-standing particles, namely zinc oxide (ZnO) , titanium dioxide (TiO2), aluminum oxide (Al2O3), and silicon dioxide (SiO2) are blended directly with LDPE, and the optical properties of the fabricated films are compared to those of films made using the granulation process. The direct blending process evidently allows for control of the secondary particle size and ensures a homogeneous dispersion of the particles, albeit to a lesser extent than the granulation process. Despite the secondary particle size being comparatively larger than its granulated counterpart, the process still provides a regulated degree of deagglomeration of the free-standing oxide particles, so it can be used as a low-cost alternative. The regulation of the secondary particle size tunes the transmission and reflection spectra, in both unary and mixed oxide compositions. Finally, the direct blending process exhibits a clear ability to tune the energy band gap in mixed oxides.
      30  6
  • Publication
    Organic Crystalline Optical Waveguides That Remain Elastic from -196 to ≈ 200°C
    ( 2022) ;
    Tang, Shiyue
    ;
    Ye, Kaiqi
    ;
    Commins, Patrick
    ;
    Naumov, Panče
    ;
    Zhang, Hongyu
    Organic crystals that are capable to deform (reversibly or irreversibly) similar to polymer materials have been widely reported over the past ten years. However, most of the reported organic crystals can only be elastically bent within a narrow temperature range, and reports on their thermal behavior that would encourage applications of these energy-transducing elements in extreme conditions are not readily available. This work designs a linear and flat π-conjugated molecule with double intramolecular hydrogen bonds that prevent thermally induced conformational distortions. The molecule assembles as a rigid building block into centimeter-sized wide organic crystals that can be elastically bent over a temperature range spanning close to 400 °C, from −196 to ≈200 °C. The emission wavelength of the crystals is also temperature dependent, and can be continually tuned from 547 to 577 nm upon heating from 20 to ≈200 °C. This inspires the design of a lightweight, organic, elastic optical waveguide where the output energy is controlled by the operating temperature. The wide range of crystal flexibility expands the range of conditions for application of organic crystals as optical waveguides.
      8
  • Publication
    Remote and precise control over morphology and motion of organic crystals by using magnetic field
    ( 2022) ;
    Yang, Xuesong
    ;
    Lan, Linfeng
    ;
    Liu, Xiaokong
    ;
    Naumov, Panče
    ;
    Zhang, Hongyu
    Elastic organic crystals are the materials foundation of future lightweight flexible electronic, optical and sensing devices, yet precise control over their deformation has not been accomplished. Here, we report a general non-destructive approach to remote bending of organic crystals. Flexible organic crystals are coupled to magnetic nanoparticles to prepare hybrid actuating elements whose shape can be arbitrarily and precisely controlled simply by using magnetic field. The crystals are mechanically and chemically robust, and can be flexed precisely to a predetermined curvature with complete retention of their macroscopic integrity at least several thousand times in contactless mode, in air or in a liquid medium. These crystals are used as optical waveguides whose light output can be precisely and remotely controlled by using a permanent magnet. This approach expands the range of applications of flexible organic crystals beyond the known limitations with other methods for control of their shape, and opens prospects for their direct implementation in flexible devices such as sensors, emitters, and other (opto)electronics.
    Scopus© Citations 2  10  1