Now showing 1 - 2 of 2
  • Publication
    A Low-Temperature-Resistant Flexible Organic Crystal with Circularly Polarized Luminescence
    (2022) ;
    Pan, Xiuhong
    ;
    Zheng, Anyi
    ;
    Di, Qi
    ;
    Duan, Pengfei
    ;
    Ye, Kaiqi
    ;
    Naumov, Panče
    ;
    Zhang, Hongyu
    ;
    Yu, Xu
    Flexible organic crystals with unique mechanical properties and excellent optical properties are of paramount significance for their wide applications in various research fields such as adaptive optics and soft robotics. However, low-temperature-resistant flexible organic crystal with circularly polarized luminescence (CPL) ability has never been reported. Herein, chiral organic crystals with CPL activity and low-temperature flexibility (77 K) are fabricated by the solvent diffusion method from chiral Schiff bases, S(R)-4- b romo-2-(((1- p henyl e thyl)imino) m ethyl) p henol (S(R)-BPEMP). The corresponding chiroptical properties for the two enantiomeric crystals were thoroughly investigated, including the measurements of circular dichroism (CD) and CPL. To the best of our knowledge, this is the first report on low-molecular-weight flexible organic crystals with CPL activity, and we believe that the results will give a new impetus to the research of organic crystals.
    Scopus© Citations 1  35  28
  • Publication
    Organic Single‐Crystal Actuators and Waveguides that Operate at Low Temperatures
    (2022) ;
    Linfeng Lan
    ;
    Qi Di
    ;
    Xuesong Yang
    ;
    Xiaokong Liu
    ;
    Panče Naumov
    ;
    Hongyu Zhang
    Applications in extreme conditions, such as those encountered in space exploration, require lightweight materials that can retain their elasticity in extremely cold environments. However, cryogenic treatment of most soft polymeric and elastomeric materials results in complete loss of their ability for elastic flow, whereby such materials that are normally ductile become stiff, brittle, and prone to cracking. Here, a facile method for preparation of hybrid organic crystalline materials that are not only cryogenically robust but are also capable of large, recoverable, and reversible deformation at low temperatures is reported. To that end, flexible organic crystals are first mechanically reinforced by a polymer coating and combined with a thermally responsive polymer. The resulting hybrid materials respond linearly and reversibly to temperatures from −15 to −120 °C without fatigue in air as well as in cold vacuum. The approach proposed here not only circumvents one of the main drawbacks that are inherent to the amorphous nature and has thus far limited the applications of polymeric materials at low temperatures, but it also provides a cost-effective access to a myriad of lightweight sensing, electronic, optical or actuating devices that can operate in low-temperature environmental settings.
      34  6