Now showing 1 - 2 of 2
  • Publication
    Economic load dispatch using memetic sine cosine algorithm
    (2022) ;
    Al-Betar, Mohammed Azmi
    Awadallah, Mohammed A.
    Assaleh, Khaled
    In this paper, the economic load dispatch (ELD) problem which is an important problem in electrical engineering is tackled using a hybrid sine cosine algorithm (SCA) in a form of memetic technique. ELD is tackled by assigning a set of generation units with a minimum fuel costs to generate predefined load demand with accordance to a set of equality and inequality constraints. SCA is a recent population based optimizer turned towards the optimal solution using a mathematical-based model based on sine and cosine trigonometric functions. As other optimization methods, SCA has main shortcoming in exploitation process when a non-linear constraints problem like ELD is tackled. Therefore, β-hill climbing optimizer, a recent local search algorithm, is hybridized as a new operator in SCA to empower its exploitation capability to tackle ELD. The proposed hybrid algorithm is abbreviated as SCA-βHC which is evaluated using two sets of real-world generation cases: (i) 3-units, two versions of 13-units, and 40-units, with neglected Ramp Rate Limits and Prohibited Operating Zones constraints. (ii) 6-units and 15-units with Ramp Rate Limits and Prohibited Operating Zones constraints. The sensitivity analysis of the control parameters for SCA-βHC is initially studied. The results show that the performance of the SCA-βHC algorithm is increased by tuning its parameters in proper value. The comparative evaluation against several state-of-the-art methods show that the proposed method is able to produce new best results for some tested cases as well as the second-best for others. In a nutshell, hybridizing βHC optimizer as a new operator for SCA is very powerful algorithm for tackling ELD problems.
    Scopus© Citations 5  35  6
  • Publication
    Review and analysis for the Red Deer Algorithm
    (2021) ;
    Abualigah, Laith
    Al-Dmour, Nidal A.
    The Red Deer algorithm (RDA), a recent population-based meta-heuristic algorithm, is thoroughly reviewed. The RD algorithm combines the survival of the fittest principle from the evolutionary algorithms and the productivity and richness of heuristic search techniques. Different variants and hybrids of this algorithm are presented and investigated. All the applications that were solved with this algorithm are presented. It is crucial to analyze the performance of this algorithm, therefore, the paper sheds light on the algorithm unique features and weaknesses covering the applications that are primarily suitable for it. The conclusions are presented, and further recommendations are suggested based on the review and analysis covered. The readers of this paper will have an understanding of the RD algorithm and its variants and, consequently, decide how suitable this algorithm is for their own business, research, or industrial applications.
      29  3