Options
Abu Zitar, Raed
A hybrid Harris Hawks optimizer for economic load dispatch problems
2023, Al-Betar, Mohammed Azmi, Awadallah, Mohammed A., Makhadmeh, Sharif Naser, Abu Doush, Iyad, Abu Zitar, Raed, Alshathri, Samah, Abd Elaziz, Mohamed
This paper proposes a hybridized version of the Harris Hawks Optimizer (HHO) with adaptive-hill-climbing optimizer to tackle economic load dispatch (ELD) problems. ELD is an important problem in power systems that is tackled by finding the optimal schedule of the generation units that minimize fuel conceptions under a set of constraints. Due to the complexity of ELD search space, as it is rigid and deep, the exploitation of HHO is improved by hybridizing it with a recent local search method called adaptive-hill climbing. The HHO can navigate several potential search space regions, while adaptive-hill climbing is used to deeply search for the local optimal solution in each potential region. To evaluate the proposed approach, six versions of ELD cases with various complexities and constraints have been used which are the 6 generation units with 1263 MW of load demand, 13 generation units with 1800 MW of load demand, 13 generation units with 2520 MW of load demand, 15 generation units with 2630 MW of load demand, 40 generation units with 10500 MW of load demand, and 140 generation units with 49342 MW of load demand. Furthermore, the proposed algorithm is evaluated on two ELD real-world cases which are 6 units-1263 MW and 15units-2630 MW. The results show that the proposed algorithm can achieve a significant performance for the majority of the experimented cases. It can achieve the best-reported solution for the ELD case with 15 generation units when compared to 15 well-established methods. Additionally, it obtains the second-best for the ELD case with 140 generation units when compared to 10 well-established methods. In conclusion, the proposed method can be an alternative to solve ELD problems which is efficient.
Economic load dispatch using memetic sine cosine algorithm
2022, Zitar, Raed, Al-Betar, Mohammed Azmi, Awadallah, Mohammed A., Assaleh, Khaled
In this paper, the economic load dispatch (ELD) problem which is an important problem in electrical engineering is tackled using a hybrid sine cosine algorithm (SCA) in a form of memetic technique. ELD is tackled by assigning a set of generation units with a minimum fuel costs to generate predefined load demand with accordance to a set of equality and inequality constraints. SCA is a recent population based optimizer turned towards the optimal solution using a mathematical-based model based on sine and cosine trigonometric functions. As other optimization methods, SCA has main shortcoming in exploitation process when a non-linear constraints problem like ELD is tackled. Therefore, β-hill climbing optimizer, a recent local search algorithm, is hybridized as a new operator in SCA to empower its exploitation capability to tackle ELD. The proposed hybrid algorithm is abbreviated as SCA-βHC which is evaluated using two sets of real-world generation cases: (i) 3-units, two versions of 13-units, and 40-units, with neglected Ramp Rate Limits and Prohibited Operating Zones constraints. (ii) 6-units and 15-units with Ramp Rate Limits and Prohibited Operating Zones constraints. The sensitivity analysis of the control parameters for SCA-βHC is initially studied. The results show that the performance of the SCA-βHC algorithm is increased by tuning its parameters in proper value. The comparative evaluation against several state-of-the-art methods show that the proposed method is able to produce new best results for some tested cases as well as the second-best for others. In a nutshell, hybridizing βHC optimizer as a new operator for SCA is very powerful algorithm for tackling ELD problems.
A non-convex economic load dispatch problem using chameleon swarm algorithm with roulette wheel and Levy flight methods
2023, Abu Zitar, Raed, Braik, Malik Sh., Awadallah, Mohammed A., Al-Betar, Mohammed Azmi, Hammouri, Abdelaziz I.
An Enhanced Chameleon Swarm Algorithm (ECSA) by integrating roulette wheel selection and Lévy flight methods is presented to solve non-convex Economic Load Dispatch (ELD) problems. CSA has diverse strategies to move towards the optimal solution. Even so, this algorithm’s performance faces some hurdles, such as early convergence and slumping into local optimum. In this paper, several enhancements were made to this algorithm. First, it’s position updating process was slightly tweaked and took advantage of the chameleons’ randomization as well as adopting several time-varying functions. Second, the Lévy flight operator is integrated with roulette wheel selection method and both are combined with ECSA to augment the exploration behavior and lessen its bias towards exploitation. Finally, an add-on position updating strategy is proposed to develop a further balance between exploration and exploitation conducts. The optimization performance of ECSA is shown by testing it on five various real ELD cases with a generator having 3, 13, 40, 80 and 140 units, each with different constraints. The results of the ELD systems’ analysis depict that ECSA is better than the parent CSA and other state-of-the art methods. Further, the efficacy of ECSA was experimented on several benchmark test functions, and its performance was compared to other well-known optimization methods. Experimental results show that ECSA surpasses other methods on complex benchmark functions with modest computational burdens. The superiority and practicality of ECSA is demonstrated by getting new best solutions for large-scale ELD cases such as 40-unit and 140-unit test systems.
Recent advances in Grey Wolf Optimizer, its versions and applications: Review
2023, Abu Zitar, Raed, Makhadmeh, Sharif Naser, Al-Betar, Mohammed Azmi, Abu Doush, Iyad, Awadallah, Mohammed A., Kassaymeh, Sofian, Mirjalili, Seyedali
The Grey Wolf Optimizer (GWO) has emerged as one of the most captivating swarm intelligence methods, drawing inspiration from the hunting behavior of wolf packs. GWO’s appeal lies in its remarkable characteristics: it is parameter-free, derivative-free, conceptually simple, user-friendly, adaptable, flexible, and robust. Its efficacy has been demonstrated across a wide range of optimization problems in diverse domains, including engineering, bioinformatics, biomedical, scheduling and planning, and business. Given the substantial growth and effectiveness of GWO, it is essential to conduct a recent review to provide updated insights. This review delves into the GWO-related research conducted between 2019 and 2022, encompassing over 200 research articles. It explores the growth of GWO in terms of publications, citations, and the domains that leverage its potential. The review thoroughly examines the latest versions of GWO, categorizing them based on their contributions. Additionally, it highlights the primary applications of GWO, with computer science and engineering emerging as the dominant research domains. A critical analysis of the accomplishments and limitations of GWO is presented, offering valuable insights. Finally, the review concludes with a brief summary and outlines potential future developments in GWO theory and applications. Researchers seeking to employ GWO as a problem-solving tool will find this comprehensive review immensely beneficial in advancing their research endeavors.
An enhanced binary Rat Swarm Optimizer based on local-best concepts of PSO and collaborative crossover operators for feature selection
2022, Zitar, Raed, Awadallah, Mohammed A., Al-Betar, Mohammed Azmi, Braik, Malik Shehadeh, Hammouri, Abdelaziz I., Abu Doush, Iyad
In this paper, an enhanced binary version of the Rat Swarm Optimizer (RSO) is proposed to deal with Feature Selection (FS) problems. FS is an important data reduction step in data mining which finds the most representative features from the entire data. Many FS-based swarm intelligence algorithms have been used to tackle FS. However, the door is still open for further investigations since no FS method gives cutting-edge results for all cases. In this paper, a recent swarm intelligence metaheuristic method called RSO which is inspired by the social and hunting behavior of a group of rats is enhanced and explored for FS problems. The binary enhanced RSO is built based on three successive modifications: i) an S-shape transfer function is used to develop binary RSO algorithms; ii) the local search paradigm of particle swarm optimization is used with the iterative loop of RSO to boost its local exploitation; iii) three crossover mechanisms are used and controlled by a switch probability to improve the diversity. Based on these enhancements, three versions of RSO are produced, referred to as Binary RSO (BRSO), Binary Enhanced RSO (BERSO), and Binary Enhanced RSO with Crossover operators (BERSOC). To assess the performance of these versions, a benchmark of 24 datasets from various domains is used. The proposed methods are assessed concerning the fitness value, number of selected features, classification accuracy, specificity, sensitivity, and computational time. The best performance is achieved by BERSOC followed by BERSO and then BRSO. These proposed versions are comparatively assessed against 25 well-regarded metaheuristic methods and five filter-based approaches. The obtained results underline their superiority by producing new best results for some datasets.