Now showing 1 - 10 of 29
  • Publication
    A Modified Oppositional Chaotic Local Search Strategy Based Aquila Optimizer to Design an Effective Controller for Vehicle Cruise Control System
    (2023)
    Ekinci, Serdar
    ;
    Izci, Davut
    ;
    Abualigah, Laith
    ;
    In this work, we propose a real proportional-integral-derivative plus second-order derivative (PIDD2) controller as an efficient controller for vehicle cruise control systems to address the challenging issues related to efficient operation. In this regard, this paper is the first report in the literature demonstrating the implementation of a real PIDD2 controller for controlling the respective system. We construct a novel and efficient metaheuristic algorithm by improving the performance of the Aquila Optimizer via chaotic local search and modified opposition-based learning strategies and use it as an excellently performing tuning mechanism. We also propose a simple yet effective objective function to increase the performance of the proposed algorithm (CmOBL-AO) to adjust the real PIDD2 controller's parameters effectively. We show the CmOBL-AO algorithm to perform better than the differential evolution algorithm, gravitational search algorithm, African vultures optimization, and the Aquila Optimizer using well-known unimodal, multimodal benchmark functions. CEC2019 test suite is also used to perform ablation experiments to reveal the separate contributions of chaotic local search and modified opposition-based learning strategies to the CmOBL-AO algorithm. For the vehicle cruise control system, we confirm the more excellent performance of the proposed method against particle swarm, gray wolf, salp swarm, and original Aquila optimizers using statistical, Wilcoxon signed-rank, time response, robustness, and disturbance rejection analyses. We also use fourteen reported methods in the literature for the vehicle cruise control system to further verify the more promising performance of the CmOBL-AO-based real PIDD2 controller from a wider perspective. The excellent performance of the proposed method is also illustrated through different quality indicators and different operating speeds. Lastly, we also demonstrate the good performing capability of the CmOBL-AO algorithm for real traffic cases. We show the CmOBL-AO-based real PIDD2 controller as the most efficient method to control a vehicle cruise control system.
      16
  • Publication
    A Novel Big Data Classification Technique for Healthcare Application Using Support Vector Machine, Random Forest and J48
    (2023) ;
    Al-Manaseer, Hitham
    ;
    Abualigah, Laith
    ;
    Alsoud, Anas Ratib
    ;
    Ezugwu, Absalom E.
    ;
    Jia, Heming
    In this study, the possibility of using and applying the capabilities of artificial intelligence (AI) and machine learning (ML) to increase the effectiveness of Internet of Things (IoT) and big data in developing a system that supports decision makers in the medical fields was studied. This was done by studying the performance of three well-known classification algorithms Random Forest Classifier (RFC), Support Vector Machine (SVM), and Decision Tree-J48 (J48), to predict the probability of heart attack. The performance of the algorithms for accuracy was evaluated using the Healthcare (heart attack possibility) dataset, freely available on kagle. The data was divided into three categories consisting of (303, 909, 1808) instances which were analyzed on the WEKA platform. The results showed that the RFC was the best performer.
      24
  • Publication
    A Novel Deep Learning Technique for Detecting Emotional Impact in Online Education
    (2022) ;
    AlZu’bi, Shadi
    ;
    Hawashin, Bilal
    ;
    Abu Shanab, Samia
    ;
    Zraiqat, Amjed
    ;
    Mughaid, Ala
    ;
    Almotairi, Khaled H.
    ;
    Abualigah, Laith
    Emotional intelligence is the automatic detection of human emotions using various intelligent methods. Several studies have been conducted on emotional intelligence, and only a few have been adopted in education. Detecting student emotions can significantly increase productivity and improve the education process. This paper proposes a new deep learning method to detect student emotions. The main aim of this paper is to map the relationship between teaching practices and student learning based on emotional impact. Facial recognition algorithms extract helpful information from online platforms as image classification techniques are applied to detect the emotions of student and/or teacher faces. As part of this work, two deep learning models are compared according to their performance. Promising results are achieved using both techniques, as presented in the Experimental Results Section. For validation of the proposed system, an online course with students is used; the findings suggest that this technique operates well. Based on emotional analysis, several deep learning techniques are applied to train and test the emotion classification process. Transfer learning for a pre-trained deep neural network is used as well to increase the accuracy of the emotion classification stage. The obtained results show that the performance of the proposed method is promising using both techniques, as presented in the Experimental Results Section.
      50  6
  • Publication
    A Novel Methodology for Human Kinematics Motion Detection Based on Smartphones Sensor Data Using Artificial Intelligence
    (2023)
    Raza, Ali
    ;
    Al Nasar, Mohammad Rustom
    ;
    Hanandeh, Essam Said
    ;
    ;
    Nasereddin, Ahmad Yacoub
    ;
    Abualigah, Laith
    Kinematic motion detection aims to determine a person’s actions based on activity data. Human kinematic motion detection has many valuable applications in health care, such as health monitoring, preventing obesity, virtual reality, daily life monitoring, assisting workers during industry manufacturing, caring for the elderly. Computer vision-based activity recognition is challenging due to problems such as partial occlusion, background clutter, appearance, lighting, viewpoint, and changes in scale. Our research aims to detect human kinematic motions such as walking or running using smartphones’ sensor data within a high-performance framework. An existing dataset based on smartphones’ gyroscope and accelerometer sensor values is utilized for the experiments in our study. Sensor exploratory data analysis was conducted in order to identify valuable patterns and insights from sensor values. The six hyperparameters, tunned artificial indigence-based machine learning, and deep learning techniques were applied for comparison. Extensive experimentation showed that the ensemble learning-based novel ERD (ensemble random forest decision tree) method outperformed other state-of-the-art studies with high-performance accuracy scores. The proposed ERD method combines the random forest and decision tree models, which achieved a 99% classification accuracy score. The proposed method was successfully validated with the k-fold cross-validation approach.
      2
  • Publication
    An intelligent cybersecurity system for detecting fake news in social media websites
    (2022) ;
    Mughaid, Ala
    ;
    Al-Zu'bi, Shadi
    ;
    Arjan, A
    ;
    Al-Amrat, Rula
    ;
    Alajmi, Rathaa
    ;
    Abualigah, Laith
    ;
    Maalej, Ahmed
    People worldwide suffer from fake news in many life aspects, healthcare, transportation, education, economics, and many others. Therefore, many researchers have considered seeking techniques for automatically detecting fake news in the last decade. The most popular news agencies use e-publishing on their websites; even websites can publish any news they want. However, thus before quotation any news from a website, there should be a close look at news resource ranking by using a trusted websites classifier, such as the website world rank, which reflects the repute of these websites. This paper uses the world rank of news websites as the main factor of news accuracy by using two widespread and trusted websites ranking. Moreover, a secondary factor is proposed to compute the news accuracy similarity by comparing the current news with fakes news and getting the possible news accuracy. Experiments results are conducted on several benchmark datasets. The results showed that the proposed method got promising results compared to other comparative methods in defining the news accuracy.
    Scopus© Citations 3  36  45
  • Publication
    Application of Red Deer Algorithm in Optimizing Complex functions
    (2021) ;
    Abualigah, Laith
    The Red Deer algorithm (RDA), a recently developed population-based meta-heuristic algorithm, is examined in this paper with the optimization task of complex functions. The RD algorithm blends evolutionary algorithms' survival of the fittest concept with heuristic search techniques' productivity and richness. It is critical to assess this algorithm's performance in comparison with other well-known heuristic methods. The findings are presented along with additional recommendations for increasing RDA performance based on the analysis. The readers of this paper will gain a grasp of the RD algorithm and its optimization ability to determine whether this algorithm is appropriate for their particular business, research, or industrial needs.
    Scopus© Citations 2  19
  • Publication
    Arabic Text Classification Using Modified Artificial Bee Colony Algorithm for Sentiment Analysis: The Case of Jordanian Dialect
    (2023) ;
    Habeeb, Abdallah
    ;
    Otair, Mohammed A
    ;
    Abualigah, Laith
    ;
    Alsoud, Anas Ratib
    ;
    Elminaam, Diaa Salama Abd
    ;
    Ezugwu, Absalom E
    ;
    Jia, Heming
    Arab customers give their comments and opinions daily, and it increases dramatically through online reviews of products or services from companies, in both Arabic, and its dialects. This text describes the user’s condition or needs for satisfaction or dissatisfaction, and this evaluation is either negative or positive polarity. Based on the need to work on Arabic text sentiment analysis problem, the case of the Jordanian dialect. The main purpose of this paper is to classify text into two classes: negative or positive which may help the business to maintain a report about service or product. The first phase has tools used in natural language processing; the stemming, stop word removal, and tokenization to filtering the text. The second phase, modified the Artificial Bee Colony (ABC) Algorithm, with Upper Confidence Bound (UCB) Algorithm, to promote the exploitation ability for the minimum dimension, to get the minimum number of the optimal feature, then using forward feature selection strategy by four classifiers of machine learning algorithms: (K-Nearest Neighbors (KNN), Support vector machines (SVM), Naïve-Bayes (NB), and Polynomial Neural Networks (PNN). This proposed model has been applied to the Jordanian dialect database, which contains comments from Jordanian telecom company’s customers. Based on the results of sentiment analysis few suggestions can be provided to the products or services to discontinue or drop, or upgrades it. Moreover, the proposed model is applied to the database of the Algerian dialect, which contains long Arabic texts, in order to see the efficiency of the proposed model for short and long texts. Four performance evaluation criteria were used: precision, recall, f1-score, and accuracy. For a future step, in order to build on or use for the classification of Arabic dialects, the experimental results show that the proposed model gives height accuracy up to 99% by applying to the Jordanian dialect, and a 82% by applying to the Algerian dialect.
      10
  • Publication
    Augmented arithmetic optimization algorithm using opposite-based learning and lévy flight distribution for global optimization and data clustering
    (2022) ;
    Abualigah, Laith
    ;
    Abd Elaziz, Mohamed
    ;
    Yousri, Dalia
    ;
    Al-qaness, Mohammed A. A.
    ;
    Ewees, Ahmed A.
    This paper proposes a new data clustering method using the advantages of metaheuristic (MH) optimization algorithms. A novel MH optimization algorithm, called arithmetic optimization algorithm (AOA), was proposed to address complex optimization tasks. Math operations inspire the AOA, and it showed significant performance in dealing with different optimization problems. However, the traditional AOA faces some limitations in its search process. Thus, we develop a new variant of the AOA, namely, Augmented AOA (AAOA), integrated with the opposition-based learning (OLB) and Lévy flight (LF) distribution. The main idea of applying OLB and LF is to improve the traditional AOA exploration and exploitation trends in order to find the best clusters. To evaluate the AAOA, we implemented extensive experiments using twenty-three well-known benchmark functions and eight data clustering datasets. We also evaluated the proposed AAOA with extensive comparisons to different optimization algorithms. The outcomes verified the superiority of the AAOA over the traditional AOA and several MH optimization algorithms. Overall, the applications of the LF and OLB have a significant impact on the performance of the conventional AOA.
      28  1
  • Publication
    Autokeras Approach: A Robust Automated Deep Learning Network for Diagnosis Disease Cases in Medical Images
    (2023)
    Alaiad, Ahmed
    ;
    Migdady, Aya
    ;
    Al-Khatib, Raed M
    ;
    Alzoubi, Omar
    ;
    ;
    Abualigah, Laith
    Automated deep learning is promising in artificial intelligence (AI). However, a few applications of automated deep learning networks have been made in the clinical medical fields. Therefore, we studied the application of an open-source automated deep learning framework, Autokeras, for detecting smear blood images infected with malaria parasites. Autokeras is able to identify the optimal neural network to perform the classification task. Hence, the robustness of the adopted model is due to it not needing any prior knowledge from deep learning. In contrast, the traditional deep neural network methods still require more construction to identify the best convolutional neural network (CNN). The dataset used in this study consisted of 27,558 blood smear images. A comparative process proved the superiority of our proposed approach over other traditional neural networks. The evaluation results of our proposed model achieved high efficiency with impressive accuracy, reaching 95.6% when compared with previous competitive models.
      13
  • Publication
    Big Data Maturity Assessment Models: A Systematic Literature Review
    (2023) ;
    Al-Sai, Zaher Ali
    ;
    Husin, Mohd Heikal
    ;
    Syed-Mohamad, Sharifah Mashita
    ;
    Abdullah, Rosni
    ;
    Abualigah, Laith
    ;
    Gandomi, Amir H.
    Big Data and analytics have become essential factors in managing the COVID-19 pandemic. As no company can escape the effects of the pandemic, mature Big Data and analytics practices are essential for successful decision-making insights and keeping pace with a changing and unpredictable marketplace. The ability to be successful in Big Data projects is related to the organization’s maturity level. The maturity model is a tool that could be applied to assess the maturity level across specific key dimensions, where the maturity levels indicate an organization’s current capabilities and the desirable state. Big Data maturity models (BDMMs) are a new trend with limited publications published as white papers and web materials by practitioners. While most of the related literature might not have covered all of the existing BDMMs, this systematic literature review (SLR) aims to contribute to the body of knowledge and address the limitations in the existing literature about the existing BDMMs, assessment dimensions, and tools. The SLR strategy in this paper was conducted based on guidelines to perform SLR in software engineering by answering three research questions: (1) What are the existing maturity assessment models for Big Data? (2) What are the assessment dimensions for Big Data maturity models? and (3) What are the assessment tools for Big Data maturity models? This SLR covers the available BDMMs written in English and developed by academics and practitioners (2007–2022). By applying a descriptive qualitative content analysis method for the reviewed publications, this SLR identified 15 BDMMs (10 BDMMs by practitioners and 5 BDMMs by academics). Additionally, this paper presents the limitations of existing BDMMs. The findings of this paper could be used as a grounded reference for assessing the maturity of Big Data. Moreover, this paper will provide managers with critical insights to select the BDMM that fits within their organization to support their data-driven decisions. Future work will investigate the Big Data maturity assessment dimensions towards developing a new Big Data maturity model.
      86  26