Options
Abu Zitar, Raed
Name
Abu Zitar, Raed
Main Affiliation
Email
raed.zitar@sorbonne.ae
ORCID
0000-0003-2693-2132
Scopus Author ID
8858522100
Status
Currently affiliated
Now showing 1 - 1 of 1
- PublicationSalak Image Classification Method Based Deep Learning Technique Using Two Transfer Learning Models(2023)
;Theng, Lau Wei ;San, Moo Mei ;Cheng, Ong Zhi ;Shen, Wong Wei ;Sumari, Putra ;Abualigah, Laith; ;Izci, Davut ;Jamei, MehdiAl-Zu’bi, ShadiSalak is one of the fruits plants in Southeast Asia; there are at least 30 cultivars of salak. The size, shape, skin color, sweetness or even flesh color will be different depending on the cultivar. Thus, classification of salak based on their cultivar become a daily job for the fruit farmers. There are many techniques that can be used for fruit classification using computer vision technology. Deep learning is the most promising algorithm compared to another Machine Learning (ML) algorithm. This paper presents an image classification method on 4 types of salak (salak pondoh, salak gading, salak sideempuan and salak affinis) using a Convolutional Neural Network (CNN), VGG16 and ResNet50. The dataset consists of 1000 images which having 250 of images for each type of salak. Pre-processing on the dataset is required to standardize the dataset by resizing the image into 224 * 224 pixels, convert into jpg format and augmentation. Based on the accuracy result from the model, the best model for the salak classification is ResNet50 which gave an accuracy of 84% followed by VGG16 that gave an accuracy of 77% and CNN which gave 31%.115Scopus© Citations 5