Now showing 1 - 4 of 4
  • Publication
    A New Method for Generalizing Burr and Related Distributions
    (2022) ;
    Das, Suchismita
    ;
    Chattopadhyay, Swarup
    A new method has been proposed to generalize Burr-XII distribution, also called Burr distribution, by adding an extra parameter to an existing Burr distribution for more flexibility. In this method, the exponent of the Burr distribution is modeled using a nonlinear function of the data and one additional parameter. The models of this newly introduced generalized Burr family can significantly increase the flexibility of the former Burr distribution with respect to the density and hazard rate shapes. Families expanded using the method proposed here is heavy-tailed and belongs to the maximum domain of attractions of the Frechet distribution. The method is further applied to yield three-parameter classical Pareto and generalized exponentiated distributions which shows the broader application of the proposed idea of generalization. A relevant model of the new generalized Burr family has been considered in detail, with particular emphasis on the hazard functions, stochastic orders, estimation procedures, and testing methods are derived. Finally, as empirical evidence, the new distribution is applied to the analysis of large-scale heavy-tailed network data and compared with other commonly used distributions available for fitting degree distributions of networks. Experimental results suggest that the proposed Burr distribution with nonlinear exponent better fits the large-scale heavy-tailed networks better than the popularly used Marhsall-Olkin generalization of Burr and exponentiated Burr distributions.
      35  5
  • Publication
    Optimized ensemble deep learning framework for scalable forecasting of dynamics containing extreme events
    (2021)
    Ray, Arnob
    ;
    ;
    Ghosh, Dibakar
    The remarkable flexibility and adaptability of both deep learning models and ensemble methods have led to the proliferation for their application in understanding many physical phenomena. Traditionally, these two techniques have largely been treated as independent methodologies in practical applications. This study develops an optimized ensemble deep learning framework wherein these two machine learning techniques are jointly used to achieve synergistic improvements in model accuracy, stability, scalability, and reproducibility, prompting a new wave of applications in the forecasting of dynamics. Unpredictability is considered one of the key features of chaotic dynamics; therefore, forecasting such dynamics of nonlinear systems is a relevant issue in the scientific community. It becomes more challenging when the prediction of extreme events is the focus issue for us. In this circumstance, the proposed optimized ensemble deep learning (OEDL) model based on a best convex combination of feed-forward neural networks, reservoir computing, and long short-term memory can play a key role in advancing predictions of dynamics consisting of extreme events. The combined framework can generate the best out-of-sample performance than the individual deep learners and standard ensemble framework for both numerically simulated and real-world data sets. We exhibit the outstanding performance of the OEDL framework for forecasting extreme events generated from a Liénard-type system, prediction of COVID-19 cases in Brazil, dengue cases in San Juan, and sea surface temperature in the Niño 3.4 region.
    Scopus© Citations 2  38  4
  • Publication
    Searching for Heavy-Tailed Probability Distributions for Modeling Real-World Complex Networks
    (2022) ;
    Chattopadhyay, Swarup
    ;
    Das, Suchismita
    ;
    Kumar, Uttam
    ;
    Senthilnath, J.
    Perhaps the most recent controversial topic in network science research is to determine whether real-world complex networks are scale-free or not. Recently, Broido and Clauset [A.D. Broido, A. Clauset, Nature Communication, 10, 1017 (2019)] asserted that the degree distributions of real-world networks are rarely power law under statistical tests. Such complex networks, including social, biological, information, temporal, and brain networks, are often heavy-tailed where the assumption on the scale-free nature of realworld heavy-tailed networks become insignificant as the complex system evolves over time. The failure of power law distribution in fitting the degree distribution data is mainly due to the presence of an identifiable non-linearity within the entire degree distribution in a log-log scale of a complex heavy-tailed network. In this study, we attempt to address this issue by proposing a new class of heavy-tailed probability distributions for modeling the entire degree distributions of complex networks. We introduce a new family of generalized Lomax models (GLM) to capture the non-linearity of these heavy-tailed networks. These newly introduced GLM-type distributions provide better fitting and greater flexibility to the entire node degree distribution of complex networks. Several statistical properties of the proposed model, such as extreme value and inferential statistical properties, are derived into this context. Interestingly, the GLM family belongs to the basin of attraction of Frechet distribution, a heavy-tailed extreme value distribution. Rigorous experimental analysis showcases the excellent performance of the proposed family of distributions while fitting the heavytailed real-world complex networks over fifty real-world datasets in comparison with benchmark probability models. Our results show that GLM-type distributions are not rare, able to model almost 90% of the tested networks accurately compared to benchmark probability models. INDEX TERMS Complex networks, heavy-tailed networks, degree distribution, Lomax distribution, extreme value properties.
      7
  • Publication
    Stochastic forecasting of COVID-19 daily new cases across countries with a novel hybrid time series model
    (2022) ;
    Rai, Shesh N.
    ;
    Bhattacharyya, Arinjita
    An unprecedented outbreak of the novel coronavirus (COVID-19) in the form of peculiar pneumonia has spread globally since its first case in Wuhan province, China, in December 2019. Soon after, the infected cases and mortality increased rapidly. The future of the pandemic’s progress was uncertain, and thus, predicting it became crucial for public health researchers. These predictions help the effective allocation of health-care resources, stockpiling, and help in strategic planning for clinicians, government authorities, and public health policymakers after understanding the extent of the effect. The main objective of this paper is to develop a hybrid forecasting model that can generate real-time out-of-sample forecasts of COVID-19 outbreaks for five profoundly affected countries, namely the USA, Brazil, India, the UK, and Canada. A novel hybrid approach based on the Theta method and autoregressive neural network (ARNN) model, named Theta-ARNN (TARNN) model, is developed. Daily new cases of COVID-19 are nonlinear, non-stationary, and volatile; thus, a single specific model cannot be ideal for future prediction of the pandemic. However, the newly introduced hybrid forecasting model with an acceptable prediction error rate can help healthcare and government for effective planning and resource allocation. The proposed method outperforms traditional univariate and hybrid forecasting models for the test datasets on an average.
    Scopus© Citations 2  86  5