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Abstract
The multilayer network framework has served to describe and uncover a number of novel and
unforeseen physical behaviors and regimes in interacting complex systems. However, the majority
of existing studies are built on undirected multilayer networks while most complex systems in
nature exhibit directed interactions. Here, we propose a framework to analyze diffusive dynamics
on multilayer networks consisting of at least one directed layer. We rigorously demonstrate that
directionality in multilayer networks can fundamentally change the behavior of diffusive
dynamics: from monotonic (in undirected systems) to non-monotonic diffusion with respect to
the interlayer coupling strength. Moreover, for certain multilayer network configurations, the
directionality can induce a unique superdiffusion regime for intermediate values of the interlayer
coupling, wherein the diffusion is even faster than that corresponding to the theoretical limit for
undirected systems, i.e. the diffusion in the integrated network obtained from the aggregation of
each layer. We theoretically and numerically show that the existence of superdiffusion is fully
determined by the directionality of each layer and the topological overlap between layers. We
further provide a formulation of multilayer networks displaying superdiffusion. Our results
highlight the significance of incorporating the interacting directionality in multilevel networked
systems and provide a framework to analyze dynamical processes on interconnected complex
systems with directionality.

1. Introduction

Multilayer networks provide a proper mathematical representation of complex systems with different types
of interactions, e.g. social interactions among individuals across different social platforms such as Facebook
and Twitter, and enable the understanding of dynamics acting on or evolving within those systems [1, 2]. A
number of dynamical processes are studied on the framework of multilayer networks: for example,
innovation/information diffusion [3], the control of formation and task allocation of swarms [4–6],
synchronization of oscillators [7], the understanding of functional brain connectivity [8], and many others.
More specifically, recent studies based on a multilayer network representation have revealed unforeseen
dynamical regimes and behaviors, such as new spreading regimes when more than one diseases in spreading
in a given population [9–12], and enhanced stability of synchronized states [13]. Moreover, conversely from
building up a multilayer structure, gradually dismantling a multilayer network triggers an abrupt transition
[14], suggesting a non-additive effect of a multilayer structure from the integration of its layers. In terms of
diffusion dynamics, multilayer network studies revealed that for any multilayer configuration, the diffusive
behavior of the overall system (multilayer network) could be tuned to be faster than that of the slowest layer
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for significant values of interlayer diffusivity (in comparison to intralayer diffusivity). More surprisingly, but
only for certain multilayer network configurations, the overall system can exhibit a superdiffusive behavior
for large values of interlayer diffusivity, where the diffusive dynamics on the multilayer network is faster
than in any of the individual layers, when those are considered in independently [15–17].

Most of the studies made in the field of multilayer networks adopt undirected structures, i.e. the
interactions represented by both interlayer and intralayer links are assumed to be undirected. However,
most real world systems are inherently directed. Examples are the World Wide Web, in which hyperlinks
run in one direction from one Webpage to another; food webs, in which energy flows from prey to
predator; phone call networks; metabolic networks; citation networks; social networks of followers and
followee; gene regulation networks, to name a few. Additionally, some dynamical processes are governed by
physical laws and inherently evolve in a directional manner despite of the underlying undirected
connectivity topology, like current/information flow from high voltage to low voltage, virus transmissions
from infected to susceptible individuals. Moreover, multi-leveled unidirectional interactions are commonly
found in interacting systems. For example, a gene regulation network aims to properly characterize both
protein-DNA and protein-protein directed interactions between genes and proteins [18]. Therein,
multilayer networks with directionality provide a realistic representation for such systems consisting of
multilevel and directed interactions.

Multilayer networks where at least one of the layers is directed give rise to new theoretical challenges in
analyzing their dynamical behaviors. As diffusion dynamics on undirected multilayer networks is fully
characterized by the spectrum of network matrices, like supra-Laplacian [15], network directionality leads
to nonsymmetrical graph matrices, which mostly features complex and non-orthogonal spectrum.
Consequently, spectrum related analysis on undirected multilayer networks might be proven as invalid or
inaccurate. Few recent studies on directed multilayer networks reveal new and unexpected physical
behaviors [16, 19], as well as increased sensitivity to structural changes [20].

The contribution of this paper is to provide a theoretical framework for diffusive dynamics on
multilayer networks with directed layers. We show that although certain undirected multilayer networks can
result in enhanced diffusive (faster than the slowest layer) or superdiffusive (faster than any of the layers)
regimes for large values of the interlayer coupling, the diffusive rate of the overall system never exceeds the
diffusion on the equivalent aggregated system (the direct sum of each layer). We also show that certain
directed multilayer networks can also show enhanced diffusive and superdiffusive regimes for large values of
interlayer coupling. Remarkably, directed multilayer networks, differently from their undirected
counterparts, can exhibit a unique superdiffusive behavior for intermediate values of coupling, where
diffusion dynamics are even faster than the corresponding aggregated system. This unique superdiffusion
regime only emerges when certain structural conditions are satisfied. We analytically and numerically
uncover conditions driving the unique superdiffusion in directed multilayer networks. In addition, we
propose a model to configure directed multilayer networks that achieves the unique superdiffusion with
tunable magnitude.

The paper is organized as follows. Diffusive dynamics on multilayer networks with direction is described
in the Model section 2. The section 3 of Results presents the conditions for diffusion regimes below the
diffusivity in the corresponding aggregated system in section 3.1 and for the superdiffusion regime above
the diffusivity in the aggregated system in section 3.2, followed by a model for the construction of a
multilayer network with superdiffusion in section 3.3. Section 4 concludes the work.

2. Model

Multilayer networks consist of nodes interacting both within the same layer and across different layers via
intralinks and interlinks which encodes multiple types of interactions. In this study, we focus on a particular
type of multilayer networks called multiplex networks, characterized by layers consisting of the same set of
nodes, but possibly different connectivity (layer topology); and layers interacting with each other only via
counterpart node. The topological structure of the multiplex is described by the so-called supra-adjacency
matrix A =

(
aij

)
, which is a block diagonal matrix. Each block is an N × N matrix, where N is the number

of nodes per layer. Each diagonal block corresponds to the adjacency matrix of a layer (intra-layer
connectivity, and therefore an entry aij = 1 in such a block corresponds to an interlayer link), while the
off-diagonal blocks, given the definition of a multiplex network, are just N × N identity matrices,
representing the inter-layer links between replica nodes across layers. Note that a directed multiplex, is a
multiplex where at least one of the diagonal blocks is not symmetric.

Let Q be the corresponding Laplacian matrix, defined as Q = D − A where D = diag (di) and
di =

∑N
i=1 aij denoting the out-going degree of a node i. We consider without loss of generality a multiplex

network consisting of two directed layers and interconnected via links of weight p � 0, the corresponding
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Laplacian matrix Q can be written in a block form as

Q =

[
Q1 + pI −pI
−pI Q2 + pI

]
(1)

where Qi = Di − Ai, i = 1, 2, denotes the Laplacian matrix for the directed graph in each layer and pI
encodes the weighted interconnections across layers. The above defined Laplacian matrix for multilayer
networks with directed layers is non-symmetrical, which might lead to complex rather than real spectrum.
As the Laplacian satisfies a zero row sum, i.e. Qu = 0 with u denoting the all one vector, value 0 is an
eigenvalue with right eigenvector u and left eigenvector denoted as y. For a nonsymmetric matrix, left and
right eigenvectors are in general not the same.

To analyze the effect of network directionality on dynamical processes, we consider the standard
diffusive dynamics on multilayer networks with directed layers and determine the convergence rate to a
fixed point solution. Let xi(t) denotes the state of a node i at time t. Changes of the state xi(t) with respect to
time is governed by ẋi(t) = −dixi(t) +

∑
iaijxi(t). The diffusive dynamics on a multilayer network can be

written in a matrix form as
dx(t)T

dt
= −x(t)TQ (2)

where ()T denotes transposition, and x(t) is the vector encoding the state of all nodes at time t. The solution
of the above governing equation follows x(t)T = x(0)Te−Qt. The fixed point x∗T at which ẋ∗T = 0 is
calculated employing the conservation law x(0)Tu = x(∞)Tu, where all one vector u is the right eigenvector
corresponding to eigenvalue 0 of the Laplacian matrix Q. Let y denote the left eigenvector of Q
corresponding to eigenvalue 0. Combining the conservation law x(0)Tu = x∗Tu and yTQ = 0 yields the
solution of fixed point

x∗ =

(
x(0)Tu

yTu

)
y. (3)

We show in appendix A a convergence to the fixed point in equation (3) is guaranteed for a connected
directed graph. The convergence rate to the fixed point x∗ is characterized by the second smallest real part
[16], denoted as Reλ2(Q), of the eigenspectrum of the Laplacian matrix.

2.1. General analysis for diffusive behavior
To analyze the convergence behavior of diffusive dynamics on multiplex networks with directed layers, we
study the spectrum of the governing Laplacian matrix and compare with the integrated system. The
characteristic polynomial for the Laplacian matrix Q in equation (1) can be calculated by, applying the
Schur complement theorem on the block Laplacian matrix,

det (λI − Q) = det

((
λI − Q1 + Q2

2

)(
(λ− 2p)I − Q1 + Q2

2

)
−ΔQ

)
(4)

where 4ΔQ = (Q1 − Q2)2 − 2 (Q1Q2 − Q2Q1). The eigen-pair of eigenvalue 2p and eigenvector (u,−u)
holds for directed multilayer networks, which is previously found in undirected multilayered networks
[12, 21]. The joint effect of the Laplacian matrices Q1 and Q2 for each layer, encoded in the matrix ΔQ,
determines the deviation of the convergence rate of the whole system from that of the integrated multilayer.

Depending on relations between the diffusive rate of the system as a whole and that of the integrated
system, we refer two complementary regimes, superdiffusive and non-superdiffusive, as follows: (i) if
Reλ2(Q) of the overall system is greater than λ2((Q1 + Q2)/2) of the integrated system, we refer to as
superdiffusive, (ii) otherwise as non-superdiffusive.

Reλ2(Q)

⎧⎨
⎩> λ2((Q1 + Q2)/2) Superdiffusive

� λ2((Q1 + Q2)/2) Non-superdiffusive
(5)

We mention that the superdiffusive regime defined in this work slightly differs from the definition in
literature [15, 16], where superdiffusion implies a faster diffusion on the overall system than the diffusion
on the fastest layer. Here, we mainly focus on diffusive behavior comparing the overall system and the
correspondent integrated system, given the later serves as the asymptotic diffusion as intercoupling strength
goes to infinity and, most importantly, serves as a theoretical upper limit for diffusion on undirected
multiplex networks [as shown in the following equation (8)].

Under the special case of Q1 = Q2, solving equation (4) yields Reλ2(Q) = min
(
λ2((Q1 + Q2)/2), 2p

)
and therefore only the non-superdiffusive regime is exhibited. General cases of Q1 �= Q2 result in
possibilities of both non-superdiffusive and superdiffusive regimes. Figure 1 exemplifies three typologies

3
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Figure 1. Superdiffusive and non-superdiffusive regimes on multiplex networks with at least one directed layers. Panel (a) shows
a multiplex network consisting of a directed layer and an undirected layer displaying a non-superdiffusive regime

(Reλ2 (Q) < λ2

(
Q1+Q2

2

)
). Panel (b) shows a multiplex network with coupled layers in a reversed direction, exhibiting a

superdiffusion (Re λ2 (Q) > λ2

(
Q1+Q2

2

)
) after the transition from a linear growth of 2p. Panel (c) shows a multiplex with

coupled layers in the same direction, exhibiting a non-superdiffusive regime (Reλ2 (Q) = λ2

(
Q1+Q2

2

)
).

including (a) coupled directed and undirected layers, (b) coupled directed layers with the opposite
direction, and (c) coupled directed layers with the same direction. Figure 1(a) and (c) show only
non-superdiffusive regimes and figure 1(b) exhibits superdiffusion. Figures 2(a) and (c) show the
non-superdiffusive and superdiffusive behavior on real-world multiplex networks, respectively.

Given the rich dynamical behavior of diffusion in directed multiplex, it is of paramount importance to
identify the key structural properties underpinning each of the observed regimes. In this study, we mainly
focus on identifying the underlying conditions driving the non-superdiffusive and superdiffusive regimes
employing the principal submatrix approach and the Cauchy interlacing theorem [22] (or the Poincare
separation theorem). In addition, we employ the eigenvalue property of a normal matrix, which satisfies
XXT = XTX. For a normal matrix, the real parts of eigenvalues are the eigenvalues of the Hermitian part
Re X = (X + XT)/2 of the matrix X.

The Laplacian matrix is similar to the following matrix Q̃ in a transformed basis

Q̃ =
1√
2

[
I I
−I I

]
Q

[
I −I
I I

]
1√
2

(6)

which can be simplified as

Q̃ =

⎡
⎢⎣

Q1 + Q2

2

Q2 − Q1

2
Q2 − Q1

2

Q1 + Q2

2
+ 2pI

⎤
⎥⎦ . (7)

The integrated Laplacian Q1+Q2
2 appears as a principal submatrix of the transformed Laplacian Q̃ of the

whole system. In addition, eigenvalues of the matrix Q̃ are the same with eigenvalues of Q due to the
similarity relation between Q and Q̃. Applying the Cauchy interlacing theorem on the transformed matrix
Q̃ and the integrated system Q1+Q2

2 as a principal submatrix, undirected multilayer networks always satisfy
the following interlacing relation

λ2 (Q) � λ2

(
Q1 + Q2

2

)
. (8)

Hence, there never occurs a superdiffusion in undirected multilayer networks, regardless of the strength of
intercoupling. Equation (8) serves as a theoretical limit and implies that although multilayer structure of
undirected layers enhances the less diffusive layer, the diffusive rate is upper bounded by the integrated
system.
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Figure 2. Non-superdiffusive and superdiffusive real-world multiplex networks. Panel (a) shows a non-superdiffusive regime on
the Vickers–Chan multiplex social networks [31] with directed layers. Panel (c) shows a superdiffusion on the multilayer network
where one layer is from Vickers–Chan multiplex and the other layer is the reverse of the first layer. Panels (b) and (d) show the
distribution of all eigenvalues of the Laplacian Q for the overall multiplex and that of the integrated system (Q1 + Q2) /2
corresponding to networks in panels (a) and (c), respectively.

3. Results

3.1. Conditions for the non-superdiffusive regime
For multilayer networks with directed layers, the conditions for non-superdiffusive and superdiffusive
regimes are translated into conditions when the Cauchy interlacing theorem between a non-symmetric
matrix and its principle submatrix is satisfied. Starting from the special case of coupled identical layers, it
follows

Reλ2 (Q) = λ2

(
Q1 + Q2

2

)
(9)

which implies a non-superdiffusive regime for directed multilayer networks with identical directed layers for
p � λ2

(
(Q1 + Q2)/2

)
/2. When the transformed Laplacian Q̃ and all the principal matrices including the

integrated matrix (Q2 + Q1)/2 are normal, the interlacing is also satisfied. Because for a principally normal
matrix, all eigenvalues of matrices Q and (Q2 + Q1)/2 lie on the same complex line with an angle θ in the
complex plane [23, 24]. For a principally normal matrix, the partial order of generalized interlacing on a
complex plain is obtained:

|λ2 (Q) | �
∣∣∣∣λ2

(
Q1 + Q2

2

)∣∣∣∣ . (10)

As the real part of eigenvalue reads |λ2 (Q) |eiθ and θ is the same for all eigenvalues, it implies an interlacing
between real parts of eigenvalues and accordingly a non-superdiffusive regime for multilayer networks with
principally normal Laplacian matrices.

When the requirement of normality of all principal submatrices is relaxed to the normality of a single
principal submatrix, generalized interlacing of lexicographic order can be applied to Q̃ and (Q2 + Q1)/2.
For a normal Laplacian matrix and a normal principal submatrix Q1+Q2

2 , we have that

λ2 (Q)�θλ2

(
Q1 + Q2

2

)
(11)

where �θ represents the lexicographic order [25] characterized by the positive cone H := {a + bi :
a > 0 or a = 0 and b > 0}. Equation (11) means that e−iθ λ2

(
Q1+Q2

2

)
− e−iθ λ2 (Q) lies in a positive cone,

5
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which implies λ2

(
Q1+Q2

2

)
� Reλ2 (Q). Therefore, directed multilayer networks with normal Laplacian

matrix and normal principal submatrix Q1+Q2
2 exhibit only the non-superdiffusive regime.

3.2. Conditions for the superdiffusive regime
Diffusion on undirected multilayer never exceeds the diffusion of integrated part. However, certain
multilayer networks with directed layers break the constraint and exhibit a unique superdiffusion. In this
subsection, we analyze conditions for the occurrence of such superdiffusion. For the generalized interlacing
theorem to hold, it requires both the whole system and the integrated system to be normal or
simultaneously close to normal. When the condition is relaxed such that the integrated system is normal or
close to normal, while the whole system deviates from normality, it might occur with superdiffusion. We
provide analytical evidences by firstly relating the real part of eigenvalues and eigenvalues of the Hermitian
part of the original matrix, which follows

N∑
j=N−k

Reλj =
N∑

j=N−k

x∗j Re Q̃xj �
N∑

j=N−k

λj

(
Re Q̃

)
(12)

where Re Q̃ denotes the Hermitian part of matrix Q̃. Because
∑N

j=1 Reλj =
∑N

j=1 λj

(
Re Q̃

)
and

λ1

(
Re Q̃

)
= 0 for a normal subgraph, we have that Reλ2 (Q) � λ2

(
Re Q̃

)
. The equality,

λ2

(
Q1+Q2

2

)
= λ2

(
Re Q1+Q2

2

)
, is achieved if the integrated system is normal.

Secondly, we analyze the superdiffusion condition by relating eigenvalues of the Hermitian part of the
integrated system and Hermitian part of the whole system. On one hand, observing that the Hermitian part
of the integrated system coincides with the principal submatrix of the Hermitian part of the whole system,

we have that λ2

(
Re Q̃

)
� λ2

(
Re Q1+Q2

2

)
due to the Cauchy interlacing theorem for Hermitian matrices.

On the other hand, λ2

(
Re Q̃

)
� λ2

(
Re Q1+Q2

2

)
+ λ2

(
Re Q2−Q1

2

)
due to Ky Fan majorization [26] theorem

λ (A + B) ≺ λ (A) + λ (B). Therefore, if the difference ‖Re (Q2 − Q1) ‖2 is bounded, it leads to

λ2

(
Re Q̃

)
≈ λ2

(
Re Q1+Q2

2

)
.

A superdiffusion is thus established

Reλ2 (Q) � λ2

(
Q1 + Q2

2

)
(13)

if (i) the integrated system is or close to normal and (ii) the structure difference of coupled layers
Re Q2 − Re Q1 is negligibly small.

The equality of λ2

(
Re Q̃

)
= λ2

(
Re Q1+Q2

2

)
is reached for a multilayer network consisting of a directed

graph coupled with its reversed graph, Q2 = QT
1 . In this case, it follows Re Q2 = Re Q1 and there exists a

superdiffusion of Reλ2 (Q) > λ2

(
Q1+Q2

2

)
.

It was reported that the superdiffusion occurs when a fully connected network coupled with a network
with a certain level of directionality, quantified by a metric called network directionality index [16]. Here,
we prove in appendix B an open problem of the normative property of the network directionality index
(NDI). In addition, we show that the condition of sufficient directionality as quantified by NDI is in line
with the derived normality conditions in this study (as shown in figure 3). The derived condition for
superdiffusion in this work, i.e. a close to normal and a deviation from normal (upper left panel in figure 3)
for the integrated and overall multiplex, respectively, is equivalent to the condition of a sufficient level of
NDI. The nonnormality condition for the non-superdiffusive regime (lower right panel in figure 3) also
agrees with the NDI condition. However, the nornormality condition is widely applicable for multiplex
networks with any number of directed layers, compared to a single directed layer dealt by NDI condition.

Though the results are demonstrated for two-layer multiplex networks, numerical results on multiplex
networks with a larger number of layers show analogous superdiffusive and non-superdiffusive behaviors,
also depending on the nonnormality and NDI conditions of the structure of each layer. However, in those
cases it is far more challenging to provide a complete mathematical proof due to the difficulty in isolating
the Laplacian of each layer from the block Laplacian.

3.3. Formulation of multilayer networks with superdiffusion
To interpret the normality conditions for superdiffusion, we propose a model to construct multiplayer
networks exhibiting superdiffusion with a tunable level of magnitude. When the coupled layers have
identical Hermitian part of Laplacian, the minimization of the normality level of the integrated structure is

6
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Figure 3. The normality condition is in line with the condition of sufficient directionality for the occurrence of superdiffusion.
The size of each circle is proportional to the value of network directionality index, NDI. The simulation is performed on a
two-layered network of N = 200 nodes wherein one layer consists of a fully connected, undirected graph and the other layer
consists of a directed graph whose NDI is modified progressively. The intercoupling weight is p = 200. A high level of NDI is
translated to a low deviation from normality of the integrated network and a high deviation of normality of the multiplex
network as a whole.

Figure 4. The difference Re λ2(Q) − λ2

(
Q1+Q2

2

)
as a function of the interlayer coupling strength p for (a) a multilayer network

consisting of directed circulant graph of 100 nodes and average degree 4 and the constructed layer by the proposed model; and
(b) a multilayer network consisting of a genetic and protein interactions network of the Epstein–Barr virus network and the
constructed layer.

translated into
min ‖Q1QT

2 − QT
2 Q1‖2 (14)

with proof in appendix C. Achieving superdiffusion by minimizing equation (14) is in general dauntingly
difficult, even for undirected graphs of symmetrical Laplacian matrices. The simultaneous diagonalization,
which always leads to the commutativity of matrices Q1 and QT

2 , i.e. Q1QT
2 = QT

2 Q1, was posted as an open
problem by Hiriart–Urruty [27] more than a decade ago. Extensive research is performed due to the close
association with quadratically constrained quadratic programming and certain advances are made for real
symmetrical matrices [28]. However, results on nonsymmetrical matrices are extremely scarce. Nonetheless,
we propose a construction model to generate a directed multilayer network by constructing one matrix (e.g.
Q2) from a given matrix (e.g. Q1), such that superdiffusion occurs.

We decompose the construction model into two parts: (i) constructing a graph G2 from the replication
of graph G1 but after reversing the direction of directed links; (ii) preserving the out-degree of each node in
graph G1 such that graph Laplacian Q2 has the same diagonal elements as Q1. To ensure the second smallest
real part of the Laplacian eigenvalue to be nonzero, we assume a single requirement of graph G1 to be a
strongly connected directed graph. To this end, we propose to reverse links in a cycle fashion, i.e.
simultaneously reversing the direction of all links involved in a cycle. In addition, the number of links
reversed in a cycle fashion is closely associated with the magnitude Reλ2 (Q) − λ2

(
Q1+Q2

2

)
of

superdiffusion. For two directed graphs G1 and G2, we define a variable q as direction overlap, the fraction

7
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of links having the same direction and calculated by q = |E(G1)∩E(G2)|
|E(G1)∪E(G2)| or in a matrix form as

q =

∑
i,j(A1)ij(A2)ij∑

i,j(A1)ij +
∑

i,j(A2)ij −
∑

i,j(A1)ij(A2)ij
. (15)

The denominator normalizes the direction overlap, in which q = 0 corresponds to Q2 = QT
1 and q = 1

corresponds to Q1 = Q2. The magnitude of superdiffusion can thus be tuned by reversing different fraction
of links, parameterized by 1 − p.

Figure 4 shows diffusive behaviors on constructed multiplex networks consisting of (a) a circulant
directed graph and the duplicate digraph with 1 − q reversed links and (b) a real-world genetic and protein
interactions network of the Epstein–Barr virus [29, 30] and the duplicate digraph with 1 − q reversed links.
The coupled digraph and its duplicate without link reversing (q = 1) displays a non-superdiffusive
behavior. For 0 � q < 1, the constructed multiplex built upon both synthetic and real-world directed graph
shows superdiffusion regimes. In addition, a higher fraction of reversed links (a smaller q) results in a
higher magnitude of superdiffusion.

4. Conclusions

In this paper, we study the diffusive dynamics on multiplex networks consisting of at least one directed
layers. Though multilayer structure of undirected layers enhances diffusion, it is restricted to a theoretical
limit by the aggregation of each layer. We show that ubiquitous property of directionality in each layer could
break this limit and achieve a unique superdiffusion regime, wherein diffusion is even faster than the
corresponding aggregated system. We analytically and numerically uncover that the unique superdiffusion is
driven by the directionality and the underlying structure of layers rather than how strongly layers are
coupled. In particular, diffusive behaviors are associated with the non-normality level of the integrated and
the overall system: when both the integrated and the overall system are normal, it is assured that the
multiplex exhibits only a non-superdiffusive regime; when the integrated system is normal or close to
normal while the whole system is deviated from normal, it exhibits the unique superdiffusive regime.
Additionally, we provide a model to construct multiplex networks, achieving superdiffusion with a tunable
level of magnitude. We show that directionality induces a unique superdiffusion, a regime not existed in the
counterpart of undirected multilayer, and suggest the key role of network directionality in analyzing
diffusive dynamics on real-world systems which oftentimes are structurally directed and multilayered.
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Appendix A. Convergence to the fixed point

The convergence to the fixed point is characterized by Δx(t)T = (x(t) − x∗)T. The rate of convergence is

regulated by Δ̇x(t)T = d(x(t)−x∗)T

dt = −(Δx(t)T + x∗T)Q = −Δx(t)TQ. The norm ‖ Δx(t)T ‖ of the
difference vector is bounded by

‖Δx(t)T‖ = ‖Δx(0)T e−Qt‖ � ‖Δx(0)T‖‖ e−Qt‖. (A.1)

If one mainly concerns with the convergence behavior for the decrease of ‖ Δx(t) ‖, the following holds for
a bounded operator Q in a Hilbert space

lim
t→∞

log ‖e−Qt‖
t

= −λmin (A.2)

where λmin is the minimum eigenvalue of the Laplacian Q. For a connected directed graph, λmin equals to
zero which means a guaranteed convergence to the steady state x∗ calculated by equation (3).
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Figure B1. A toy structure to exemplify the simplification of NDI by theorem 1.

Appendix B. Proof that network directionality index is normalized

In the appendix, we prove that the metric quantifying the level of directionality is normalized to 1. Rewrite
the definition [16] of NDI as

NDI =
〈Δdij〉
〈dij〉

(B.1)

or equivalently,

NDI =

∑N
i=1

∑
j>iΔdij∑N

i=1

∑
j>i

di→j+dj→i

2

(B.2)

where Δdij = |di→j − dj→i|.

Theorem 1 For a directed cycle network consisting of N nodes and N directed links in a clockwise or
counterclockwise direction, the NDI can be simplified as

NDI =
2
∑N

j=1 |di→j − dj→i|∑N
j=1

(
di→j + dj→i

) (B.3)

where
∑N

j=1 |di→j − dj→i|/N is the average path asymmetry and
∑N

j=1

(
di→j + dj→i

)
/2N is the average path

length starting from an arbitrary node i and arriving at each of the remaining N − 1 nodes.

Proof For a directed circulant graph of N nodes and N directed links in a clockwise direction, the shortest
directed path from node i to node j and back to i forms a closed cycle of length N, regardless of choices of
pairs of nodes (i �= j). Thus, we have that

N∑
i=1

∑
j>i

di→j + dj→i

2
=

N

4

N∑
j=1

(
di→j + dj→i

)
. (B.4)

Applying the symmetry of Δdij = Δdji into the numerator of (B.2), we have that

N∑
i=1

∑
j>i

Δdij =
1

2

N∑
i=1

N∑
j=1

Δdij. (B.5)

For a directed cycle consisting of N nodes and N directed links in a clockwise direction, the sum
∑N

j=1 Δdij

is the same for each node i and we arrive at

N∑
i=1

N∑
j=1

Δdij = N
N∑

j=1

Δdij. (B.6)

Substituting (B.4) and (B.6) into the definition of NDI establishes theorem 1.(figure B1) �
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Figure B2. Adding a directed link j → i forms a sub-cycle consisting of ck(= 3) nodes and ck directed links in a clockwise
direction.

Theorem 2 Given a directed cycle consisting of N nodes and N directed links in a clockwise direction, adding a
single or multiple directed links between any pair of nodes i and j generates shortcuts either in forward (i → j) or
backward (j → i) direction between that pair of nodes and thus forms k (k � 1) sub-cycles with each consisting
of ck (ck � N) nodes and ck links. The NDI′ after adding directed links is smaller than or equal to the NDI of the
original directed cycle.

Proof Adding a directed link connecting node j to i forms a sub-cycle k consisting of ck nodes and ck

directed links in a clockwise direction, as shown in figure B2. For a pair of nodes i and j in the sub-cycle k,
the difference of path asymmetry Δdij before and after adding directed links reads

Δd′
ij −Δdij = N − 2 min

(
di→j, dj→i

)
−
(
ck − 2 min

(
di→j, dj→i

))
= N − ck (B.7)

and the difference of di→j + dj→i before and after link addition reads

d′
i→j + d′

j→i −
(
di→j + dj→i

)
= N − ck. (B.8)

Summing up all the node pairs starting from node i to the remaining N − 1 nodes yields

NDI′ =
2
∑N

j=1

(
|di→j − dj→i| − (N − (m)j)

)
∑N

j=1

((
di→j + dj→i

)
− (N − (m)j)

) . (B.9)

where m is a column vector of length N with element (m)j = ck if node j belongs to a sub-cycle of ck nodes
and ck directed links in a clockwise direction, which can be further simplified as

NDI′ =
2
∑N

j=1 |di→j − dj→i| −
∑

j

(
N − (m)j

)
∑N

j=1

(
di→j + dj→i

)
−
∑

j

(
N − (m)j

) . (B.10)

It has been shown [16] that a directed cycle of N nodes has NDI < 1. Subtracting the same number∑
j

(
N − (m)j

)
both in the numerator and denominator of (B.2) does not increase the NDI of the original

cycle consisting of N nodes. �
Since a directed cycle of N nodes has NDI � 1 (theorem 1) and adding directed links does not increase

the NDI (theorem 2), we prove that NDI � 1.

Appendix C. Proof of equation (14)

Given the equality of the Hermitian part of the coupled directed layers, we show that the close to normal
condition of the integrated system is translated to the minimization of equation (14) in the main text. The
definition of normality of the integrated system reads (Q1 + Q2) (Q1 + Q2)T = (Q1 + Q2)T (Q1 + Q2),
which can be rewritten as

Q1QT
1 − QT

1 Q1 + Q2QT
2 − QT

2 Q2 = QT
2 Q1 − Q1QT

2 + QT
1 Q2 − Q2QT

1 . (C.1)

Left multiplying Q1 of the equality of Re Q1 = Re Q2 yields

Q1Q1 + Q1QT
1 = Q1Q2 + Q1QT

2 . (C.2)

Additionally, right multiplying Q1 yields

Q1Q1 + QT
1 Q1 = Q2Q1 + QT

2 Q1. (C.3)

10
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Subtracting equation (C.3) from equation (C.2) results in

Q1QT
1 − QT

1 Q1 = Q1Q2 − Q2Q1 + Q1QT
2 − QT

2 Q1. (C.4)

Analogously, left and right multiplying Q2 establishes

Q2QT
2 − QT

2 Q2 = Q2Q1 − Q1Q2 + Q2QT
1 − QT

1 Q2. (C.5)

Substituting the equations (C.4)–(C.5) into the definition of normality leads to

Q1QT
2 − QT

2 Q1 + Q2QT
1 − QT

1 Q2 = 0, (C.6)

from which we have that Q1QT
2 − QT

2 Q1 is a skew symmetric matrix and the real part of all eigenvalues are
0. Minimizing the normality level of the integrated system can be quantified and analyzed by the
minimization of equation (14).
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