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Abstract: Marathon Lake is an artificial reservoir with great environmental, ecological, social, and 
economic significance because it was the main source of water for Athens, the capital of Greece, for 
many years. The present study details the first attempt to map sedimentation in Marathon Lake in 
detail, using bathymetric mapping and soil erosion field surveying of the torrent watershed areas. 
First, the results of a bathymetric survey carried out in 2011 were compared with topographic maps 
that pre-date the construction of the dam. Based on this comparison, an estimated 8.34 hm3 of 
sediment have been deposited in the 80 years since the dam’s construction. In the current survey, 
the Revised Universal Soil Loss Equation (RUSLE) was used to estimate soil loss in the watershed 
area of the streams that end in Marathon Lake. The estimated value from the RUSLE was 
substantially lower (3.02 hm3) than that calculated in the bathymetric survey. 
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1. Introduction 

Erosion caused by the effect of runoff from the soil is a major global environmental problem as 
it results in land degradation [1]. The erosive action of water affects an estimated 56% of land globally, 
which seriously impacts land productivity. Forest fires, overgrazing, land cover changes due to 
urbanization, land abandonment, agricultural expansion, and monoculture yields have increased and 
exacerbated soil erosion. 



Environ. Sci. Proc. 2020, 2, 63 2 

 
 

Many empirical models have been developed worldwide. The most-used empirical model is the 
Universal Soil Loss Equation (USLE) [2] and its variations, that is, the Revised USLE (RUSLE) [3]. 
Modern technological tools, such as geographic information systems, remote sensing imagery, digital 
elevation models, bathymetric instruments, geo-electrical tomographic tools, and global positioning 
system devices, help scientists correctly calculate the factors that are necessary to assess soil erosion 
using models on the local, regional, or national scale [4]. 

Today, scientists have modern technological tools at their disposal, which give them data for 
many of the factors present in soil erosion models, such as the slope, vegetation, geology, and soils. 
In particular, the development of modern computers and geographic information systems enables 
the carrying out of simulations to predict the effects of measures against erosion and land use change 
scenarios. In addition, the increasing availability of computer data storage enables the easy storage 
of enormous amounts of data from satellite images used for soil erosion modeling. Remote sensing 
data and the available spatial data for a variety of factors used in models can be inserted into soil 
erosion models and processed using geographic information system software [5,6]. 

Water erosion is the major cause of soil degradation in reservoir watersheds, including 
Marathon Lake in the Attica Prefecture, near the capital of Greece. The lake was used as a source of 
drinking water for settlements in Athens from 1929 until 1959. The area around Marathon Lake 
provides a unique habitat for wild plants and animals. Although sedimentation is a problem for the 
lake, information about existing lake sediments is lacking. Knowledge on the severity and 
distribution of soil erosion in the watersheds of the torrents that supply the lake is necessary. 

In the current study, modern technological tools were used to map sediment within Lake 
Marathon and to implement a soil erosion model for the watersheds upstream of Marathon Lake. The 
aim of the research was to compare the soil erosion estimated by a soil erosion model with the results 
of a bathymetry study that calculated the sediment within the lake. The RUSLE soil erosion model 
was applied to predict the annual soil loss in the Marathon Lake watershed. During the study, a 
destructive fire that erupted in 2009 in the northeastern part of the Attica Prefecture burned 27% of 
the vegetation cover of the Marathon Lake watershed [7]. Thus, the impact of this mega-fire on soil 
erosion rates in watershed areas was also assessed in the current study. 

2. Study Area 

Marathon Lake (Figure 1), in the northern part of the Attica Prefecture in central Greece 
(38°10′06.79′′ Ν & 23°54′00.39′′ E), is a water storage reservoir. Technical specifications for Marathon 
Lake and its dam are provided by the Athens Water Supply and Sewerage Company [8]. The 
watershed of Marathon Lake has a total area of 116.96 km2, and it is delimited by Mt. Parnis to the 
east and Mt. Penteliko to the south. The northern watershed boundary, with an east–west to 
northeast–southwest orientation, has elevations of up to 500 m and separates the watershed to the 
south from the small drainage networks that flow to the Evoikos Gulf in the north [9]. The main axis 
of the largest river flow (Inois or Charadros) is east–west in the mountainous upper sub-watershed, 
but the river changes its course halfway downstream to flow towards the southeast, and forms a large 
alluvial fan at its mouth in Marathon Bay, in the South Evoikos Gulf. The river was interrupted by 
the construction of a dam and the formation of Marathon Lake. 

3. Materials and Methods 

A bathymetric study of Marathon Lake was conducted with the help of personnel from EYDAP. 
The bottom of the lake was scanned to calculate the yearly average sediment loads that were 
deposited in the lake from its formation to the time this study was conducted. The design of the 
bathymetric study followed the methodology designed by [10] for their study of the Kremasta 
reservoir. The survey was conducted with a Lowrance echo sounder and its associated software. The 
survey equipment consisted of a hand-held Global Positioning System (GPS) and an LCX-15MT 
remote acoustic sounder. The survey was conducted in June and July 2011, with data collected from 
a total of 32,000 points. Old topographic maps of the lake from 1931 were scanned and digitized to 
enable mapping of the relief of the lake before the construction of the dam. The projection system of 
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these maps was unknown, so they were rubber sheeted using as many points as possible to create a 
best fit with the current lake shore. The 1931 and 2011 bottom contours of the lake were overlapped 
and used to compute the accumulation of sediment in the lake between 1931 and 2011 (80 years). 

 

 
Figure 1. Study area. 

The Revised Universal Soil Loss Equation (RUSLE) was implemented with the support of 
geographic information systems on the watersheds of Marathon Lake in order to estimate the 
watershed’s soil erosion rates and compare them with the results of the bathymetric study. The 
relevant input parameters of the model were calculated separately and stored as vector data. Five 
vector data items, each of the five factors of the RUSLE model, were converted to raster images with 
a 20-m pixel resolution. In each pixel, a value was assigned equivalent to the value of the 
corresponding model parameter. The RUSLE is expressed as a simple product of the different factors, 
as indicated in the following equation: 

A = R × K × LS × C × P, (1) 

where: A, soil loss per unit area (t/ha), R, rainfall erosivity factor (MJ mm/ha h), Κ, soil erodibility 
factor (t h/M J mm), LS, topographic factor that constitutes the slope length factor (L) and slope 
steepness factor (S)(-), C, vegetation management factor (-), and Ρ, erosion control practice factor (-). 

3.1. Rainfall Erosivity Factor (R) 

The R factor is the coefficient for average erosion by rain. Rain has a direct impact on the soil 
surface; the kinetic energy of raindrop impact destroys the soil structure and mixes soil particles with 
runoff water. According to [2], the R coefficient is calculated based on the maximum rain intensity in 
30 minutes; however, in Greece and many other countries, sufficient records are not available for this 
calculation. Thus, researchers use other solutions for R, including calculations of the average annual 
or monthly rainfall. According to [11], R can be calculated from the average annual rainfall as follows: 

R = 0.83N – 17.7 (2) 

where N is the average annual rainfall (mm) and R is the rainfall erosivity factor.  
This equation has been used to calculate rainfall erosivity in many places in Greece [12]. Climatic 

data were collected from meteorological stations at Marathon, Tanagra, and Tatoi. These data 
included monthly, and in some cases daily, rainfall, temperature, humidity, and evapotranspiration 
for the period 1960–2009. Given that annual rainfall at the Marathon Dam meteorological station is 
588.9 mm, the rainfall erosivity factor in the study area is calculated to be 471.09 MJ mm/ha h yr. 
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3.2. Soil Erodibility Factor (K) 

The soil erodibility factor (K) is determined from five soil properties: the percentage of silt and 
fine sand, the percentage of intermediate or coarse sand, organic matter, the type of soil structure, 
and soil permeability. K is defined using either nomographs or equations. In this study, the 
information required to determine the K factor values was obtained from earlier reports [12]. In the 
current study, the assignments of K values were based on 1:50000 scale geological maps from the 
Greek Ministry of Agriculture, initially used to identify individual geological formations of the 
Marathon Lake watershed and create a corresponding map; K values for the study area are shown in 
Table 1. 

Table 1. Assigned K values of the Marathon Lake watershed according to geological material. 

Geology K 
Hard limestone 0.006 

Schist 0.01 
Flysch 0.015 

Tertiary deposits 0.1 

3.3. Slope Length and Steepness Factors (LS) 

The slope length and steepness factors represent the effect of topography, specifically the slope 
length (L) and slope steepness (S). Slope length is defined as the horizontal distance from the starting 
point of runoff to the point where either the gradient decreases enough to enable deposition or where 
the runoff is collected in a stream. In the current study, both factors were determined from a Digital 
Elevation Model (DEM) of the study area. These factors were calculated from the flow accumulation 
and slope steepness in radians using ArcGIS. Finally, the LS factor was calculated using an amended 
version of the empirical equation established by [13]: 

LS = [flow accumulation × cellsize/22.13]0.4 × [(sin (slope·3.14/180))/0.0896]1.3 (2) 

The LS factor for the Marathon Lake watershed ranges from 0 to 143.69. 

3.4. Management Factor (C) 

The cover management factor (C) considers the influence of cultivation techniques and 
management practices on the soil erosion rate. In the RUSLE model, this factor is calculated as a 
function of soil loss rate under certain circumstances of vegetation cover, surface cover, soil 
roughness, and soil moisture. Land cover maps of the study area were used to determine the C factor. 
Land cover types, both before and after the fire of 2009, were derived from two Landsat-7 ETM+ 
images acquired on 16 February 2007 and 3 March 2010 via the maximum likelihood classification 
method using ERDAS Imagine software [14]. The final land use classes were fir forest (Abies 
cephalonica), pine forest (Pinus halepensis), shrubland (macchia), phrygana (garrigues), agricultural 
areas, bare soil areas, burned areas, and towns. After converting raster files to a vector format in 
ArcGIS, a corresponding C value was assigned to each land use class (Table 2), as described by 
[2,11,12]. 
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Table 2. Values of the management factor (C) assigned to each land use class of the study area. 

Land Use Class C 
Fir forest (Abies cephalonica) 0.001 
Pine forest (Pinus halepensis) 0.001 

Shrubland (Macchia) 0.03 
Phrygana (Garrigues) 0.45 

Agricultural areas 0.20 
Bare soil areas 1.00 
Burned areas 0.55 

Towns 1.00 

3.5. Conservation Practice Factor (P) 

The conservation practice factor describes the influence of management practices against soil 
erosion (the factor is dimensionless, ranging from 0 to 1). It is defined as the ratio of soil loss under a 
management practice to the corresponding soil loss in cultivated land [2]. Assuming no support 
practice in the study area, the P factor was set to 1. 

4. Results 

4.1. Results of the Bathymetric Study 

The spatial distribution of accumulated sediment in the lake (Figure 2) makes clear that sediment 
accumulates in the lake, particularly as deltaic deposits in the uppermost parts. The total sediment 
volume was calculated to be 8.34 hm3.  

 
(a) 

 

(b) 

Figure 2. Bathymetric maps of Marathon Lake from 1929 (a) and 2011 (b). 

4.2. Estimated Soil Loss in the Marathon Lake Watershed According to the RUSLE Model 

The mean annual sediment yield, based on the RUSLE model, is estimated to be 27.79 t/ha before 
the 2009 fire, and 28.95 t/ha after the fire. Direct measurement of sediment density was not possible, 
mainly because it was impossible to collect undisturbed samples. Results were multiplied by the soil’s 
specific weight value (typically 2.67 t/m3, with a range of 2.65–2.75 t/m3), following [15]. The total 
sediment volume accumulated from the whole watershed was estimated, and the results are listed in 
Table 3. 
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Table 3. Estimation of total sediment volume for the Marathon Lake watershed based on the Revised 
Universal Soil Loss Equation (RUSLE) model. 

 
Mean Soil 

Loss 
(t/ha) 

Area 
(ha) 

Sediment 
Delivery 

Ratio 
(SDR) 

Years of 
Dam 

Function 

Mean Soil 
Loss 

(103 kg) 

Volume 
(m3) 

Volume 
(hm3) 

Before fire 
of 2009 

27.79 11 696 0.31 78 7,862,097.98 2,944,605.99 2.94 

After fire 
of 2009 

28.95 11 696 0.31 2 210,004.02 78,653.19 0.08 

The total sediment volume accumulated during the 80 years of dam operation was determined 
to be approximately 2.94 + 0.08 = 3.02 hm3. Soil loss maps for the study area before and after the 2009 
fire, based on the RUSLE, are shown in Figure 3. Five erosion classes were distinguished based on 
calculated soil losses: 0–3 t/ha, 3–5 t/ha, 5–10 t/ha, 10–15 t/ha, and > 15 t/ha, which are hereafter 
referred to as very slight, slight, medium, high, and very high soil losses, respectively. 

(a) (b) 

Figure 3. Marathon Lake watershed soil loss maps after (a) and before (b) the fire of 2009, calculated 
with the RUSLE. 

5. Discussion 

Applying the RUSLE erosion model to the Marathon Lake watershed allowed us to evaluate the 
applicability of the model to data produced by modern technological tools and to compare the model 
results with sediment accumulation results calculated in a bathymetric study. In addition, our study 
identified the advantages and disadvantages of the RUSLE model. One major limitation of the model 
was the small number of input parameters. Most published studies [16] agree that better values of 
statistical indices for soil erosion models could be achieved in mountainous river watersheds by 
following a valid methodology and correctly calculating model parameters. According to [17], special 
consideration must be given to the area of a lake watershed, because this parameter gives an 
indication of how easily the watershed could be eroded and produce a high sediment load. The main 
disadvantage of the RUSLE model is its highly simplified evaluation of suspended sediment loads. 
The numerical coefficient values in the original form of the RUSLE, for example, emerged from data 
processing from small watersheds in the USA. Consequently, this might be a drawback to the method 
when applied to areas outside the USA. In addition, the RUSLE model does not consider the sediment 
loads on slopes of river watersheds and does not yield satisfactory results in large-scale watersheds 
[18]. Another major weakness of the soil erosion model used is that it calculates soil erosion rates by 
multiplying totally different factors reflecting rainfall, soil characteristics, topographic gradients, 
vegetation cover, and erosion control practices when, in fact, it is argued that soil erosion cannot be 
approached in such a simplified way [19]. We also have to mention that streambed erosion or 
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deposition was not taken into account in this study and that the trap efficiency of the reservoir was 
not estimated. From the soil erosion rates calculated by the soil erosion models used, we conclude 
that the RUSLE model manages to estimate only a portion (36.25%) of the total sediment accumulated 
in Marathon Lake. 

6. Conclusions 

Sediment deposition in Marathon Lake was assessed using a hydrographic survey and the 
RUSLE empirical model. A hydrographic survey of Marathon Lake proved to be an effective method 
for estimating the volume of sediment accumulated in the lake over the 80 years of operation of the 
associated dam. A drawback of the method is that it calculates the total deposited sediment and 
provides no information about the duration of sedimentation in Marathon Lake. Thus, continuously 
determining the sediment deposits in the lake at regular intervals (e.g., every 5 years) using 
bathymetric surveys is imperative so that sediments are constantly monitored. Soil erosion models 
could be applied every year to assess the rate of erosion in watershed areas to develop a temporal 
sequence of deposits in the lake. Using even more advanced technological tools, such as differential 
GPS, will more precisely estimate the volume of sediments in the lake. 
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