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Wavelet

Wavelet is a wave-like oscillation localized in time. It can
_ _ capture the time and the frequency of a signal. In our work, Softmx Multi-Head Attntion
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performance compared with the mechanism of Transformers makes them

state-of-the-art forecast methods for suitable for time series data analysis: they concurrently
short and long-term forecasting. represent each input sequence element by considering its
context, while multiple attention heads can consider

different representation
subspaces, i.e., multiple

et aspects of relevance
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efficient for long-term forecasting because wavelets handle SheTei SvEREe ik e e Framework time series. The log(N)-1
nonstationarity while Transformers handle long-term forecasting. The time series are called.
overall performance of our W-Transformers is superior compared to all _ || details while the last one is the smooth. Then we fit the log(N) time series into
forecasters considered in this study. For small sample-sized datasets, S separate transformers to get log(N) model. Each model will give the prediction
the performance of statistical methods is comparatively better than f - - of one details time series that we recombine with the inverse MODWT to get
that of W-Transformers. However, the proposal performed better than L 1] the final forecasting. To assess the performance of the model we then use 4
all the baseline models for large temporal datasets _ different metrics, Root Mean Squared Error (RMSE), Mean Absolute Error
FEEEEREEEEY (MAE), Symmetric Mean Absolute Percentage Error (sMAPE), and Mean
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Datasets

Data Name

NFLX

Website Traffic

Sunspot

Colombia Dengue

Japan Flu 964

Bangkok Dengue 180 12/24

AutoARIMA - 3.
WARIMA

Network Analytics 5-min 25631 576/1152

Characteristics of the

datasets
(N-S . Non-Stationary, S . Stationary,

N-L : Non-Linear, L : Linear)
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