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Abstract An unprecedented outbreak of the novel
coronavirus (COVID-19) in the form of peculiar pneu-
monia has spread globally since its first case in Wuhan
province, China, in December 2019. Soon after, the
infected cases and mortality increased rapidly. The
future of the pandemic’s progress was uncertain, and
thus, predicting it became crucial for public health
researchers. These predictions help the effective allo-
cation of health-care resources, stockpiling, and help in
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strategic planning for clinicians, government authori-
ties, and public health policymakers after understand-
ing the extent of the effect. The main objective of this
paper is to develop a hybrid forecasting model that can
generate real-time out-of-sample forecasts of COVID-
19 outbreaks for five profoundly affected countries,
namely the USA, Brazil, India, the UK, and Canada. A
novel hybrid approach based on the Theta method and
autoregressive neural network (ARNN) model, named
Theta-ARNN (TARNN) model, is developed. Daily
new cases of COVID-19 are nonlinear, non-stationary,
and volatile; thus, a single specific model cannot be
ideal for future prediction of the pandemic. However,
the newly introduced hybrid forecasting model with an
acceptable prediction error rate can help healthcare and
government for effective planning and resource allo-
cation. The proposed method outperforms traditional
univariate and hybrid forecasting models for the test
datasets on an average.

Keywords COVID-19 Forecasting - Theta model -
Autoregressive Neural Networks - Hybrid model -
Asymptotic stationarity

1 Introduction
In December 2019, clusters of pneumonia cases caused
by the novel severe acute respiratory syndrome coro-

navirus 2 (SARS-Cov-2) were identified at Wuhan,
Hubei province, in China [1-3]. Soon after the emer-
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gence of the novel beta coronavirus, World Health
Organization (WHO) characterized this contagious dis-
ease as a pandemic in March 2020 due to its rapid
spread within and outside the highly mobile population
of China which got further aggravated by the densely
populated location of the sea food market and time
of Chinese new year [4]. It resulted in an exponential
increase in the incidence rate (IR) and case fatality rate
(CFR) [5]. As of March 16,2021, atotal of 120,512,041
confirmed global cases and 2,665,742 deaths have been
reported worldwide [6].

Researchers have faced significant challenges to
forecast real-time COVID-19 cases with traditional
mathematical, statistical, and machine learning-based
forecasting tools [7—13]. Studies in March 2020 with
simple and efficient forecasting methods such as expo-
nential smoothing model predicted cases ten days
ahead, with large confidence intervals, that despite
the positive bias, had reasonable forecast error [14].
Previously used linear and exponential model fore-
casts for better preparation regarding hospital beds,
ICU admission estimation, resource allocation, emer-
gency funding, and proposing strong containment mea-
sures were conducted [15] that projected ICU admis-
sions in Italy for March 20, 2020. ICU admission and
mechanical ventilation for critically ill patients reached
their peak shattering the health system of Lombardy,
Italy, by end of March 2020 [16]. Health-care work-
ers had to go through the immense mental stress left
with a formidable choice of prioritizing young and
healthy adults over the elderly for allocation of life
support, especially unwanted ignoring of those who are
extremely unlikely to survive [17,18]. Real estimates
of mortality with 14-day delay demonstrated underes-
timating the COVID-19 outbreak and indicated a grave
future with a global CFR of 5.7% [19]. Some of the
countries are eventually in a second wave with cases
rising in India, and the UK. The uncertain future has
several unanswered questions on the daily trajectory of
the pandemic, infection rate, and number of deaths.
Thus, real-time forecasting with time series models
could respond to these debatable quires to reach a sta-
tistically validated conjecture in this current health cri-
sis. Some of the impacting leading-edge research con-
cerning real-time projections of COVID-19 confirmed
cases, recovered cases, and mortality using statisti-
cal, epidemiological, and machine learning models are
as follows. Short-term forecasting of cumulative con-
firmed cases was produced using autoregressive inte-
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grated moving average (ARIMA), Cubist regression,
random forest, ridge, support vector regression (SVR),
and stacking-ensemble learning (SEL) model in [20],
whereas exponential smoothing model produced ten
days ahead forecasts of actual cases within 90% CI and
forecasts reflect the significant increase in the trend of
global cases with growing uncertainty [ 14]. Forecasting
and nowcasting domestic and international COVID-
19 cases are also done with epidemiological compart-
mental models, like susceptible-exposed—infectious—
recovered (SEIR) and SIR models [8,9,21]. The pre-
diction and modeling of cumulative COVID-19 deaths
in Mexico have utilized ANN and a Gompertz model
with multiple optimization algorithms and emphasized
on the performance of ANN with different param-
eter settings [22]. Parametric or data-driven model-
ing approaches for the virus infection and propagation
and machine learning methods for predicting the virus
spreading dynamics are previously used in the litera-
ture [23,24]. Modern machine learning techniques such
as neural networks and black-box deep learning mod-
els were also used for COVID-19 forecasting [25,26].
Dynamics and control of COVID-19 pandemic with
nonlinear incidence rates and building nonlinear mod-
els for COVID-19 forecasting have been found useful
for European countries [27,28]. There is a huge litera-
ture on mathematical modeling in epidemiology start-
ing from the early work of [29], going through the com-
partmental models of [30] laying down the foundations
of modern epidemiology, up to the current data-driven
approaches (see, e.g., [31-33] addressing COVID-19).
However, forecasting COVID-19 cases is harder and
this is primarily due to the following major factors
[34]: (a) Very less amount of data is available; (b) less
understanding of the factors that contribute to it; and
(c) model accuracy is constrained by our knowledge of
the virus. With an emerging disease such as COVID-
19, many biologic features of transmission are hard
to measure and remain unknown, (d) another source of
uncertainty, affecting all models, is that we do not know
how many people are, or have been, infected; and (e)
we are certainly missing a substantial number of cases
due to virologic testing, so models fitted to confirmed
cases are likely to be highly uncertain [35].
Time-series forecasting models take the input of his-
torical observations and extrapolate the patterns into the
future. The past in no way will continue in the future
for this pandemic, so it is challenging to model and
produce predictions. There are essentially two general
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approaches to forecasting a time series: (a) generat-
ing forecasts from a single model and (b) combining
forecasts from many models (hybrid). In classical time
series forecasting, the ARIMA model is used predom-
inantly for forecasting linear time series [36], which
has a significant strong assumption of linearity in the
system and homoscedastic error distribution, typically
without sudden jumps and bursts. Individual models
such as ARIMA, wavelet ARIMA (WARIMA) [37],
and Theta method [38,39] are inadequate to model such
situations. Usage of nonlinear time series techniques in
infectious disease modeling has successfully demon-
strated the success of artificial neural networks (ANNSs)
and autoregressive neural networks (ARNNs) [40—43].
The idea of hybridizing forecasting models is not a new
concept, and their empirical applications resulted in
superior forecasts to their counterparts. Most recently,
some hybrid models combining linear and nonlinear
time series models are proposed for COVID-19 [12,44]
and performed exceptionally well for predicting these
epidemics.

Motivated by this, this study considers the time
series datasets of coronavirus confirmed cases that
show nonlinearity, non-stationary, and non-Gaussian
patterns, thus making decisions based on a discrete
model critical and unreliable. Another difficulty in
COVID-19 data from the modeling aspect is the
unavailability of sufficient data points, which gener-
ates biased predictions and estimates, which can be well
maneuvered by neural nets [45]. Most of the relevant
studies focused on the outbreak’s short-term and long-
term forecasts of reported confirmed cases have a broad
range of fluctuations, wide confidence intervals, poorly
reported data and model specifics, and highly optimistic
predictive performance [46]. On the other hand, this
paper handles the problem of forecasting of the cur-
rent pandemic cases by designing a hybrid decision-
making method based on highly useful Theta forecast-
ing method and machine learning-based ARNN model.
Hybridization of two highly accurate and useful models
can be regarded as the most handy solution [47] for opti-
mizing forecasting performance, and efficiency with
irregular data characteristics of COVID-19 cases [48].
The importance of hybrid methodology with a fusion
of linear and nonlinear forecasting models became evi-
dent in tackling such dynamic/nonlinear time series due
to its in-built time-changing variance, complex auto-
correlation structure [12,49]. With the growing need
for advanced parsimonious hybrid forecasting methods

accompanied by precise accuracy and accurate fore-
casts, this paper focuses on providing a plausible solu-
tion for COVID-19 forecasting using the newly pro-
posed hybrid decision making system. The main objec-
tives of this study are as follows:

1. To propose a simple and computationally efficient
hybrid forecasting model which generates out-of-
sample forecasts (two months) for five profoundly
affected countries (the USA, Brazil, India, the UK,
and Canada) with higher accuracy as compared to
state-of-the-art forecasting methods.

2. To prove the model’s stationarity and ergodicity
properties from a statistical point of view.

3. To discuss the merits and future challenges that
need attention while working with the proposal for
epidemiological forecasting. We also recommend
policy-making decisions and resource allocation
based on these forecasts.

Therefore, this study proposes a novel hybrid Theta
autoregressive neural network model (TARNN) model
combining Theta and ARNN models that can cap-
ture complex COVID-19 data structures. The proposed
hybrid decision-making model captures complex data
structures and linear plus nonlinear behavior of pan-
demic datasets. In the first phase of our proposed model,
Theta method catches the linear patterns of the dataset.
Then, the ARNN model is employed to capture the non-
linear patterns in the data using residual values obtained
from the base Theta model. The proposed TARNN
model has easy interpretability, produces robust predic-
tions, and is adaptable to seasonality. Through experi-
mental evaluation, we have shown the excellent perfor-
mance of the proposed hybrid model for the pandemics
forecasting for several datasets. An RShiny application
is also built for TARNN which can help practitioners
reproducing and updating the forecasts as further data
become available.

The rest of the paper is organized as follows:
Sect. 2 describes the formulation of the proposed hybrid
TARNN model. The ergodicity and stationarity of the
proposed hybrid model are discussed in Sect. 3. In
Sect. 4, we discuss the country-wise COVID-19 con-
firmed case datasets and experimental results. The dis-
cussions about the results and practical implications
are given in Sect. 5. Finally, we conclude the paper in
Sect. 6.

@ Springer
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2 Methodology

We start by discussing the single forecasting mod-
els to be used in the hybridization, followed by the
detailed formulation of the proposed hybrid Theta-
ARNN model.

2.1 Theta method

The ‘Theta method’ or ‘Theta model’ is a univariate
time series forecasting technique that performs par-
ticularly well in M3 forecasting competition and of
interest to forecasters [39]. The method decomposes
the original data into two or more lines, called theta
lines, and extrapolates them using forecasting models.
Finally, the predictions are combined to obtain the final
forecasts. The theta lines can be estimated by simply
modifying the ‘curvatures’ of the original time series.
This change is obtained from a coefficient, called 0
coefficient, which is directly applied to the second dif-
ferences of the time series:

Ynew(g) = QYdata’ )]
where Y;am =Y, —2Y,_1 + Y;_o at time ¢ for t =
3,4,...,nand {Yy, Y2, ..., Y,} denote the observed
univariate time series. In practice, the coefficient 8 can
be considered as a transformation parameter which cre-
ates a series of the same mean and slope with that of
the original data but having different variances. Now,

Eq. (1) is a second-order difference equation and has
solutions of the following form [38]:

Yiew(0) = ag +bo(t — 1) +0Y;, ()

where ag and by are constants and t = 1,2,...,n.
Thus, Yy, (0) is equivalent to a linear function of Y;
with a linear trend added. The values of ag and by are
computed by minimizing the sum of squared differ-
ences:

t
D 1Y = Yaew(O)
i=1

t
=Y 11— 0)Y —ag —by(t = DI 3)

i=1

Forecasts from the Theta model are obtained by a
weighted average of forecasts of Y., (6) for different
values of 8. Furthermore, the prediction intervals and
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likelihood-based estimation of the parameters can be
obtained based on a state space model which is demon-
strated in [38]. The generalized version of the Theta
method is suitable for automatic forecasting of time
series [50].

2.2 ARNN model

Artificial neural network-based forecasting methods
received increasing interest in various applied domains
inthe late 1990s. A wide variety of neural nets are popu-
larly used for supervised classification, prediction, and
nonlinear time series forecasting [51]. The architec-
ture of a simple feedforward neural network can be
described as a network of neurons arranged in an input
layer, hidden layer, and output layer in a prescribed
order. Each layer passes the information to the next
layer using weights that are obtained using a learning
algorithm [52]. ARNN model is a modification to the
simple ANN model especially designed for prediction
problems of time series datasets [52]. ARNN model
uses a pre-specified number of lagged values of the time
series as inputs, and the number of hidden neurons in its
architecture is also fixed [53]. ARNN(p, k) model uses
p lagged inputs of the time series data in a one hidden
layered feedforward neural network with k£ hidden units
in the hidden layer. Let x denote a p-lagged inputs and
f be a neural network of the following architecture:

k
f(£)=00+2wj¢(aj+b}£>; “4)
j=1

where co,aj, w; are connecting weights, b; is p-
dimensional weight vector, and ¢ is a bounded non-
linear sigmoidal function (e.g., logistic squasher func-
tion or tangent hyperbolic activation function). These
weights are trained using a gradient descent backpropa-
gation [54]. Standard ANN faces the dilemma to choose
the number of hidden neurons in the hidden layer, and
the optimal choice is unknown. However, for ARNN
model, we adopt the formula k = [(p + 1)/2] for non-
seasonal time series data where p is the number of
lagged inputs in an autoregressive model [53].

2.3 Proposed TARNN model

In this section, we describe the proposed hybrid model
based on Theta method and ARNN model and we
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name it TARNN model. The proposed TARNN model
is based on an error remodeling approach, and there are
broadly two types of error calculations popular in the
literature which are given below [55].

Definition 1 In the additive error model, the forecaster
treats the expert’s estimate as a variable, Y;, and thinks
of it as the sum of two terms:

YA[ =Y +e,

where Y; is the true value and e, is the additive error
term.

Definition 2 In the multiplicative error model, the
forecaster treats the expert’s estimate Y; as the prod-
uct of two terms:

Y =Y xey,

where Y; is the true value and e; is the multiplicative
error term.

Now, even if the relationship is of product type, in
the log—log scale, it becomes additive. Hence, without
loss of generality, we may assume the relationship to
be additive and expect the errors (additive) of a fore-
casting model to be random shocks. However, this is
violated when there are complex correlation structures
in the time series data and less amount of knowledge is
available about the data generating process. A simple
example is the daily confirmed cases of the COVID-19
cases for various countries where very little is known
about the structural properties of the current pandemic.
Thus, we need two-stage modeling approach to formu-
late this complex time series problem. The proposed
TARNN model is a hybrid model based on the addi-
tive error remodeling approach. The hybrid TARNN
approach consists of three basic steps:

— In the first step of the TARNN model, the Theta
method is applied to the time series data to model
the linear components of a given time series dataset.

— Theta model generates in-sample forecasts, and the
error series is calculated.

— In the next phase, the residuals (additive errors)
generated by the Theta method are remodeled using
a nonlinear ARNN model. Finally, both the fore-
casts obtained from the Theta and ARNN models
are combined together to get the final forecasts for
the given time series.

The mathematical formulation of the proposed
hybrid TARNN model (Z;) is as follows:

Zi = Ly + Ny,

where L, is the linear part and N, is the nonlinear part of
the hybrid model. We can estimate both L; and N; from
the available time series data. Let L ¢ be the forecast
value of the Theta model at time ¢ and ¢, represent the
error residuals at time 7, obtained from the Theta model.
Then, we write

€ =Zt_£l‘~

These left-out residuals are further modeled by ARNN
model and can be represented as follows:

&= fle—1,€6-2,...,6_p) + &,

where f is a nonlinear function and the modeling is
done by the ARNN model as defined in Eq. (4) and ¢;
is supposed to be random shocks. Therefore, the com-
bined forecast can be obtained as follows:

21 =1:r+1\7t,

where 1\7; is the forecasted value of the ARNN model.
An overall flow diagram of the proposed TARNN
model is given in Fig. 1.

In the proposed TARNN model, ARNN is applied to
remodel the left-over autocorrelations in the residuals
which Theta model individually could not model. Thus,
the proposed TARNN model can be considered as an
error remodeling approach. This is important because
due to model mis-specification and disturbances in the
pandemic time series, the linear Theta model may fail
to generate white noise behavior for the forecast residu-
als. The TARNN approach eventually can improve the
predictions for the epidemiological forecasting prob-
lem as shown in Sect. 4 .

Remark 1 Theidea of additive error modeling is useful
for modeling complex time series for which achieving
random shocks based on individual forecasting mod-
els is difficult. More precisely, the TARNN approach
is developed for forecasting the COVID-19 confirmed
cases for which the data generating process and the var-
ious characteristics of the epidemic are still unknown.
The proposed TARNN model only assumes that the
linear and nonlinear components of the epidemic time
series can be separated individually.

@ Springer
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Fig.1 The main workflow
of the proposed TARNN
model
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3 Ergodicity and stationarity of the proposed
TARNN model

In this section, we derive the results for the ergodicity
and asymptotic stationarity of the proposed TARNN
model. The ergodicity and stationarity are of partic-
ular importance from a statistician’s point of view in
time series analysis since for such processes a single
realization displays the whole probability of the data
generating process. We use several previous results on
nonlinear time series and Markov chains to find suffi-
cient conditions for which the overall process is ergodic
and stationary [56-59].

To start, we write the underlying stochastic model
of the Theta method using the state space approach.
We initialize the model by setting Y1 = /1 and then for

@ Springer

t =2,3,...; and drift term b, let

Y[:lt_1+b+€[ and lt:l[_1+b+a6[

where {¢;} is assumed to follow Gaussian white noise
with mean zero and variance o> and « is the smoothing
parameter for the simple exponential smoothing (SES)
model. Now, Y, follows a state space model which gives
forecasts equivalent to SES with drift [38]. Also, ¥; can
be written in the following form:

Y=Y 1+b+(a—1De_| +¢. Q)
The above is an ARIMA(O, 1, 1) process with drift
term [38]. The left-out residuals of Theta model are
further modeled by ARNN process. We consider the
ARNN process generated by the additive noise of the
ARIMA(O, 1, 1) process with drift. Let €; be the pro-
cess defined by the stochastic difference equation of
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the following form:

€& = fe—1,€-2, -  €—p, O) + &, (6)

where ¢; is an i.i.d. noise process and f (-, @) is a feed-
forward neural network with weight (parameter) vector
® and inputs €,_1, €2, ..., €,_p. The definition of f
is given in Eq. (4).

3.1 Time series as Markov chains

We start by defining the following notations:

!

-1 = (Et—l, cee Et—p)
F(z;—1) = (f(zt—l)»et—la ..-,ez—p+1)
e = (et,o,...,O)’
Then, Eq. (6) can be written as follows [56]:
2t =F(z—1) + e @)

with z;, e, € R”. In this section, we show the (strict)
stationarity of the state space form, as defined in Eq. (7).
The problem of showing {z,} to be stationary is closely
related to the ergodicity of the process [60]. A Markov
chain {z,} is called geometrically ergodic if there exists
a probability measure 7 on the state space (R”, B) and
a constant p > 1 such that

Jim p"[[P*(z, A) = (A)] =0 ®)

for each z € R”, B is the Borel o-algebra on R” and
|l - || denotes the total variation norm. If Eq. (8) holds
for p = 1, then {z,} is called ergodic.

The definition for P"(z, A) can be given as the prob-
ability that {z,} moves from z to the set A € B inn
steps: P"(z, A) = P (Zy4n € Alz; = 2) . Also, expres-
sion for 7 (A) is as follows:

7(A) =/P1(z, A)(dz) forall A € B.

Thus, we call 7 as the stationary measure and the dis-
tribution of z; converges to m if {z;} is ergodic. Then,
we say {z;} is asymptotically stationary [61]. To estab-
lish the ergodicity of TARNN processes, we need the
concept of irreducibility and aperiodicity. A Markov
chain {z;} is called irreducible if

o0
Z P%(z,A) >0 forall zeR?,

n=1

whenever A(A) > 0 and A denotes the Lebesgue mea-
sure on (R”, B). Thus, for an irreducible Markov chain,
all parts of the state space can be reached by the Markov
chain irrespective of the starting point. Now, an irre-
ducible Markov chain is aperiodic if there exists an
A € BwithA(A) > Oand forall C € B, C C A with
A(C) > 0, there exists a positive integer n such that

P"(z,C)>0 and P"T!(z,C) >0 forall zeR".

Hence, it is possible that the Markov chain returns to
given sets only at specific time points for an aperi-
odic Markov chain. For most general time series mod-
els, irreducibility and aperiodicity cannot be assumed
automatically. However, for a TARNN process, these
conditions can be checked. In general, it is sufficient
to assume the distribution of the noise process to be
an absolutely continuous component with respect to
Lebesgue measure and the support of the probability
density function (PDF) is sufficiently large.

3.2 Main results

It is clear from the above discussion that if the Markov
chain is geometrically ergodic, then its distribution
will converge to 7w and the corresponding time series
will be called asymptotically stationary, see also [58].
Lemma 1 states that the state space of the Markov chain
cannot be reduced depending on the starting point.

Lemma 1 Let {z;} be defined by (7), and let E|g;| <
oo and the PDF of & be positive everywhere in R.
Then, if f is defined by (4), the Markov chain {z;} is
o-irreducible and aperiodic.

Proof Since the support of the PDF of ¢, is the whole
real line, that is, the PDF is positive everywhere in R,
then we can say that {z;} is g-irreducible by using [56].
In our case, every non-null p-dimensional hypercube
can be reached in p steps with positive probability (and
hence every non-null Borel set A). A necessary and
sufficient condition for {z;} to be aperiodic is to have a
set A and positive integer n such that P"(z, A) > 0 and
P"1l(z, A) > 0 for all z € A [58]. In this case, this
is true for all n due to consideration of the unbounded
additive noise. O

The theorem below states the necessary conditions
for geometric ergodicity of a Markov chain. This can be
obtained using the decomposition technique and ergod-
icity of stochastic difference equations [56,59].

@ Springer
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Theorem 1 Suppose {z;} is defined as in (6) and (7),
F is a compact set that can be decomposed as F =
Fy + Fy, and the following conditions hold:

(1) Fy(.) is continuous and homogeneous, and Fy(.) is
bounded;

(i) Elet| < oo, and probability distribution function
of & is positive everywhere in R; then, {z;} is geo-
metrically ergodic.

Proof {z;} satisfies the following equation:
2zt =F(zi—1)+e t>1, and F:R? — R”. (9)

Let F}, be continuous and homogeneous, viz. Fj,(cz) =
cFy(z) forall c > 0, z; € R?, and F; be bounded. Let
the origin, O, be a fixed point of F},. It is important to
note that &, satisfies the condition (ii) in Theorem 1.
We are going to show the existence of a continuous
Lyapunov function, V, in a neighborhood of the origin
which will ensure the geometric ergodicity of (7).

To start with we let W C RP?, the closure of W by w
and its boundary by W. We also let V be defined over
the closure of the unit ball. We let pyp = inf);j=1 V(2),
where || - || denotes the Euclidean norm. Also, let G be
the maximal connected component of {z : V(z2) < %}
that contains the origin. Then, we have F(G) C G.

Let g(z) = inf{r > 0,z € rG}, z € R?, where
rG = {rz, z € G}. Then, g(z) is well defined and it can
easily be checked that g has the following properties:

1. g(cz) = cg(z), forall ¢ > 0.

2. There exists 0 < ¢ < C < oo such that c||z]] <

8@ = Cliz|.

(z/8() € G.

4. There exists € > 0, 0 < 0 < 1 such that for all
z€G, yeR, wehave |y — F)| <e = y €
G and g(y) < 6.

(O8]

Now, for Eq. (7), &; satisfies E|e;| < co.Let A € Band
z € RP, wedefine P(z, A) be the transition probability
function as:

P(z, A) = / FOPB@D).
A—F(2)

Thus, it holds that

fg(y)P(z, dy)

= / g(Fn(2) +1) f(1)P(dr)
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Z t
= Fl——)+ —
/nz/g(zn«g(Z)g( ! (g(z)> g(Z))

fOPt)

Z t
+ Fp| — )|+ —
/Ht/g(z)|>é ss ( " (g(z)> g(z))

f(@0)P(dt)
< [6g@)] + [M + g(2)B(2)] for some M > 0.

Here, |8(z)] < B < oo for all z and B(z) — 0O as
lzll = oo. We let h(z) = g(z) + 1 and r be such that

1-0)

for ||z]| > r.

1B(2)| <

4(C+1)

3 /
, m) , there exists B’ such

Then, for ro = max (r
that

l. [ f(»)P(z,dy) < B’ <oo when |[z]| < ro.
2. [ fO)P(z,dy) < (1 +6)h(z) when [z]| >
ro-

Using Theorem 4 of [60], we can conclude that {z;} is
geometric ergodic. O

The next theorem gives the main result for asymptotic
stationary of the TARNN model.

Theorem 2 Let E|¢;| < 0o and the PDF of &; be posi-
tive everywhere in R, and {&;} and {z;} are defined as in
(6) and (7), respectively. Then, if f is a nonlinear neu-
ral network as defined in (4), then {z;} is geometrically
ergodic and {&;} is asymptotically stationary.

Proof The noise process &; satisfies E|e;| < oo by
assumption (e.g., Gaussian noise). Itis also important to
note that neural network activation functions, more pre-
cisely logistics or tan-hyperbolic activation functions,
are continuous compact functions and have a bounded
range. Thus, {z;} satisfies all the criteria to be geomet-
rically ergodic and using Theorem (1), one can write
that for the ARNN process with F, =0 and F; = F.
Thus, the series {e;} is asymptotically stationary. O

Remark 2 Some interpretations and practical implica-
tions of the theoretical results are given below:

— The geometric rate of convergence in Theorem 2
implies that the memory of TARNN process van-
ishes exponentially fast. This implies that the sim-
plest version of the proposed model converges to a
Wiener process.
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Table 1 Description of COVID-19 datasets

Country name Start—end date No. of days Minimum value Maximum value Train size Test size
USA 22/01/2020-26/02/2021 402 0 251,161 342 60
Brazil 26/02/2020-26/02/2021 367 0 70,574 307 60

India 30/01/2020-26/02/2021 394 0 97,894 334 60

UK 31/01/2020-26/02/2021 393 0 41,460 333 60
Canada 26/01/2020-26/02/2021 398 0 10,100 338 60

— This is important for predictions over larger inter-
vals of time; for example, one might train the
network on an available sample and then use the
trained network to generate new data with similar
properties like the training sample. The results for
the asymptotic stationarity can guarantee that the
proposed hybrid model cannot have growing vari-
ance over time.

— From practitioners point of view, when the data
are generated by the irreducible TARNN process,
the estimated weights are not too far from the true
weights. Then, one can draw an indirect conclusion
on the statistical nature of the observed data based
on the estimated weights.

4 Experimental analysis

Five time series COVID-19 datasets are considered
for assessing various forecasting models (individual
and hybrid). The datasets are mostly nonlinear, non-
stationary, and non-Gaussian in nature. We have used
root-mean-square error (RMSE), mean absolute error
(MAE), and mean absolute scaled error (MASE) [62] to
evaluate the predictive performance of the models used
in this study. Since the number of data points in all the
datasets is limited, advanced deep learning techniques
will overfit the datasets [63].

4.1 Data description

Data are collected from the ‘Our World in Data’
public repository (Link: https://ourworldindata.org/
coronavirus) on five countries: the USA, Brazil, India,
the UK, and Canada that have the leading number of
confirmed cases of COVID-19. These are univariate
time series from inception—February 26, 2021, of con-
firmed cases that are analyzed for generating future out-

break predictions. We have taken last 60 data points
as test points on which the forecasting models are
evaluated. A summary of the COVID-19 datasets of
confirmed cases and their descriptions is presented in
Table 1. A pictorial view of the training datasets along
with auto-correlation function (ACF) and partial ACF
(PACF) plots is given in Table 2.

4.2 Performance evaluation metrics
The performance of different forecasting models are

evaluated based on RMSE, MAE, and MASE metrics
for these five time series [53]:

1 n
=Y i =%
n

i=1

RMSE =

1 n
MAE = - ) |yi — ¥l

&
where y; is the actual value, y; is the predicted value,
and n denotes the number of data points. MASE is com-
puted using ‘mase’ function available under the ‘Met-
rics’ package in R statistical software. By definition,
the lower the value of these performance metrics, the
better is the performance of the concerned forecasting
model.

4.3 Analysis of results

A schematic diagram is presented in Fig. 2 to give
an outline of the models to be used in this section.
We start the experimental evaluation for all datasets
with the classical ARIMA(p, d, q) using ‘forecast’
[64] statistical package in the R statistical software
[65]. The nonlinear and non-seasonal time series of
these countries were modeled with traditional and
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Table 2 Training datasets (new daily cases) and corresponding ACF and PACF plots for all the countries considered in this study

Country | Training data ACF plot PACF plot
Ush ACF plot PACF plot
USA | | M
|
L [1
! { T N T ] T
Brazi ACF plot PACF plot
Brazil | - &, |
T
..................... I
] mea ACF plot = PACF plot =
”“‘1‘\\»’»
1M
f '
il | 0
w\“ ‘\"\‘ . %
India i Mt g H
| (M
M
fv"\’\"
K ACF plot PACF plot
UK 4 5
~ Il Iy
I
Taly ACF plot PACF plot
Canada & g
Ll
‘‘‘‘‘ ] L L I
,,,,,, \ BN o

advanced methods such as ARIMA, Theta, WARIMA
[66], ETS [67,68], TBATS, ARNN, and two popu-
larly used hybrid models, namely hybrid ARIMA-
ARNN [69], hybrid ARIMA-WARIMA [12], and the
newly introduced hybrid Theta-ARNN (TARNN) mod-
els. For the accuracy of prediction, the data were par-

@ Springer

titioned into training and test sets, where the test set
consisted of last 60 data points, and the training set
included (inception - 60+1) data points. Table 3 gives
the essential details about the functions and packages
required for the implementation of standard individual
models.
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Time series
forecast-
ing tools

( Classical ) ( Advanced ) [ Hybrid )
~ ARIMA [36] \ ~ WARIMA [68]\ ™ AAREWQE]
» ETS[67] | i+ TBATS[69] | WAARRIII\;/IAA[H]
> Theta [39] \ +\ ARNN [52] \ (ptﬁfﬂzld)

Fig. 2 Time series forecasting tools (available and proposed)
used in this study

In the proposed TARNN model, linear modeling is
conducted with Theta model using ‘thetaf’ function
under the ‘forecast’ package in R statistical software.
Nonlinear modeling with ARNN approach is carried
out with ‘caret’ package using ‘nnetar’ function in R
statistical software. Furthermore, Theta residuals are
modeled with ARNN( p, k) model having a pre-defined
Box-Cox transformation set A = 0 to ensure the fore-
cast values to stay positive. The values of p and k
are obtained by training the network, which is a data-
dependent approach as discussed in Sect. 2.2. Further,
both the linear and nonlinear forecasts are summed up
to obtain the final forecasts. Theta model was fitted to
five datasets, namely the USA, Brazil, India, the UK,
and Canada. Theta model residuals for these five coun-
tries were trained using ARNN(15, 8), ARNN(21, 11),
ARNN(25, 13), ARNN(24, 12), ARNN(12, 6), and
ARNN(9, 5) models with an average of 500 networks
for all five datasets, each of which is a 15-8-1, 21—
11-1, 25-13-1, 24-12-1, 12-6-1, and 9-5-1 net-
works with 137, 254, 352, 313, 85, and 56 weights
and with 5,807,711, 309,816, 20,735, 883.6, 209,396,
and 59,477 estimated o2, respectively. Finally, the pre-
dicted results of both Theta and ARNN models are
added together to obtain the estimated forecasts of the
proposed TARNN model. Rest of the hybrid models
were compared in the similar fashion.

We compared our proposed TARNN model with
traditional single models (ARIMA, TBATS, Theta,
ARNN, WARIMA, ETS) along with hybrid ARIMA-

WARIMA model and hybrid ARIMA-ARNN model,
and the experimental results are reported in Table 4.
The performance of the proposed hybrid Theta-ARNN
(TARNN) model is superior compared to all traditional
individual and hybrid models on average. The theoret-
ically proven asymptotic stationarity of the proposed
hybrid model also suggests that the model cannot have
a growing variance over time. The consistency and ade-
quacy in the experimental results empirically approve
the same. Thus, the efficacy of the proposed method-
ology of the proposed hybrid model is experimentally
validated. Nevertheless, no model can have dominant
advantage and this is related to no free lunch theorem in
statistical learning [63]. Forecast of COVID-19 cases
for March 20-29, 2021, is generated using proposed
TARNN model and shown in Fig. 3.

5 Discussions

We now provide a brief discussion on some time series
characteristics that will guide a potential modeler to
opt for their hybrid scheme. A time series is usu-
ally classified into discrete or continuous, deterministic
or stochastic, stationary or non-stationary, and linear
or nonlinear. In real-life epidemiological forecasting
problems, it is often challenging to determine whether
a time series under study is generated from a linear
or nonlinear underlying process. Since all the avail-
able pandemic datasets are complex and often contain
both linear and nonlinear patterns, a single model may
be insufficient to meet the whole data characteristic
adequately. Thus, a hybrid model combining both the
linear and nonlinear components is indeed useful. The
basic assumption in the hybrid methodology is the addi-
tive relationship between the linear and nonlinear com-
ponents of the time series. Thus, the proposed hybrid
decision-making system is best suited for both station-
ary or non-stationary time series and situations when
the data exhibit both linear and nonlinear patterns. In
the development of the hybrid methodology, we need
the component model to be sub-optimal, and it will be
useful to combine individual forecasts based on dif-
ferent information sets to produce superior forecasts.
Based on our experience on COVID-19 forecasting in
this work, we comment that our proposal is best suited
in situations where the datasets will have enough non-
linearity and non-stationarity. The experimental finding
also suggests that the presence of the concept shift in
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Table 3 R functions and packages for standard forecasting model implementations

Model R function R package References
ARIMA Auto.arima Forecast [64]

ETS Ets Forecast [64]
TBATS Thbats Forecast [64]

Theta Thetaf Forecast [64]
ARNN Nnetar Forecast [64]
WARIMA WaveletFittingarma WaveletArima [70]

Table 4 Quantitative measure of performances of forecasting methods on the COVID-19 test datasets for five countries

Methods USA UK India Canada Brazil
MASE values

ARIMA 3.55 5.53 0.67 2.08 1.55
Theta 3.24 5.88 1.89 2.08 1.31
WARIMA 4.97 6.46 5.26 1.8 1.53

ETS 2.47 5.62 1.17 1.65 1.86
TBATS 2.46 5.58 1.44 1.81 4.77
ARNN 3.29 5.67 3.16 2.23 2.83
ARIMA-ARNN 3.59 5.50 0.71 2.06 1.53
ARIMA-WARIMA 3.64 5.69 0.72 2.05 1.58
Proposed TARNN 3.27 5.07 1.60 1.53 1.05
RMSE values

ARIMA 85,378.21 19,598.5 5325.44 2879.54 28,661.69
Theta 77,538.27 21,033.15 9159.85 2976.44 22,950.91
WARIMA 116,791.17 43,298.22 25,609.64 2764.52 28,139.06
ETS 60,473.05 20,017.92 6527.45 2425.78 33,242.02
TBATS 604,72.43 19,855.08 7262.95 2647.24 86,202.46
ARNN 79,694.81 16,796.84 14,859.34 3063.08 48,693.24
ARIMA-ARNN 86,626.36 19,557.8 5323.38 2876.86 27,825.87
ARIMA-WARIMA 86,938.13 20,249.21 5428.55 2845.54 28,908.41
Proposed TARNN 78,320.37 16,559.04 7854.66 2323.95 20,423.69
MAE values

ARIMA 72,823.9 17,672.58 2833.76 2390.47 24,714.92
Theta 66,491.15 18,797.76 8024.95 2497.19 20,853.47
WARIMA 101,923.84 36,890.4 22,279.76 2069.01 24,294.93
ETS 50,537.67 17,953.84 4972.05 1893.77 29,506.42
TBATS 50,533.39 17,839.37 6091.65 2074.26 75,834.12
ARNN 67,409.69 14,941.82 13,389.13 2556.93 44,939.99
ARIMA-ARNN 73,690.5 17,585.56 3023.91 2386.66 24.,259.25
ARIMA-WARIMA 74,637.97 18,187.05 3056.05 2353.5 25,162.57
Proposed TARNN 66,939.65 14,770.08 5487.11 758.82 16,701.18

Best results are made ‘bold’. Proposed TARNN beats all the models for three out of five datasets and remains competitive for other two

datasets
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Fig. 3 Out-of-sample Actual vs Predicted Covid-19 Cases March 20-29, 2021
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time series leads to inconsistency in the performance
among different time series models (see, for example,
all the hybrid models including our proposed one fail
to capture the concept shift in the US data as reported
in Table 4). Even in Fig. 3, the out-of-sample forecasts
and actual values are worse for the UK data, whereas
for other countries, we could capture the data irregular-
ities quite well. Experimental finding also suggests the
presence of the concept shift in time series data which

leads to inconsistency in the performance among dif-
ferent time series models for a few datasets.

Many parameters associated with COVID-19 trans-
mission are still poorly understood. The resulting
model uncertainty is not always calculated or reported
in a standardized way. Once we can incorporate these
variables, we can improve our estimates and update
the TARNN model accordingly. Since purely statisti-
cal approaches do not account for how transmission
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occurs, they are generally not well suited for long-term
predictions about epidemiological dynamics (such as
when the peak will occur and whether a resurgence
will happen) or for inferences about intervention effi-
cacy. Most forecasting models therefore limit their pro-
jections to one week or a few weeks ahead. More-
over, the problem of using confirmed cases to fit mod-
els is further complicated by the fact that the frac-
tion of cases that are confirmed is spatially heteroge-
neous and time-varying. Amid enormous uncertainty
about the future of the COVID-19 pandemic, the pro-
posed TARNN model yields quantitative projections
that policymakers may need in the short term to allo-
cate resources or plan interventions. Guided by the
short-term forecasts reported in this paper, the lock-
down period can be adjusted accordingly and vacci-
nation project can be enhanced. Since we presented
a real-time forecast system unlike an ex post analy-
sis, thus one can regularly update the actual confirmed
cases and update the out-of-sample forecasts, just like
it happens in temperature forecasting. To conclude, this
model can further be easily extended for similar non-
linear and non-Gaussian forecasting problems arising
99in other applied domains.

6 Conclusions

In this study, we proposed a novel hybrid Theta-ARNN
(TARNN) model using residual modeling approach
that performs considerably well for confirmed cases
of COVID-19 forecasting for the countries that include
the ones with the highest number of cases: the USA,
followed by Brazil, India, the UK, and Canada. The pro-
posed TARNN model filters linearity using the Theta
model and can better explain the linear, nonlinear,
and non-stationary tendencies present in the selected
COVID-19 datasets compared to the traditional single
and hybrid models. It also yields better forecast accu-
racy than various traditional single and hybrid models
for three out of five countries. The proposal will be
useful in decision and policy making for government
officials and policymakers to allocate adequate health-
care resources for the coming days in responding to the
crisis. Time series of epidemics can oscillate heavily
due to various epidemiological factors, and these fluc-
tuations are challenging to be captured adequately for
precise forecasting. This newly developed model can
still predict with better accuracy provided the condi-

@ Springer

tions of asymptotic stationarity of the hybrid model are
satisfied. This method can be used to update real-time
forecasts as more data become available. The study
covering multiple countries can be utilized without geo-
graphical borders and reflects the impact of social dis-
tancing, wearing masks, lock down, shutdown, quaran-
tine, and sanitizing proper measures implemented by
authorities. Prevalent techniques in the literature were
unable to completely capture the nonlinear behavior
of stochastic time series containing inherent random
shock components. This new method has significant
theoretical (established ergodicity and stationarity of
the proposed TARNN process) as well as practical
implications. Authorities and health care can modify
their planning in stockpiles and hospital beds depend-
ing on these forecasts of the COVID-19 pandemic.
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